Spelling suggestions: "subject:"stochastischer algorithmus"" "subject:"stochastischer baumalgorithmus""
1 |
3-D modeling of shallow-water carbonate systems : a scale-dependent approach based on quantitative outcrop studiesAmour, Frédéric January 2013 (has links)
The study of outcrop modeling is located at the interface between two fields of expertise, Sedimentology and Computing Geoscience, which respectively investigates and simulates geological heterogeneity observed in the sedimentary record. During the last past years, modeling tools and techniques were constantly improved. In parallel, the study of Phanerozoic carbonate deposits emphasized the common occurrence of a random facies distribution along single depositional domain. Although both fields of expertise are intrinsically linked during outcrop simulation, their respective advances have not been combined in literature to enhance carbonate modeling studies. The present study re-examines the modeling strategy adapted to the simulation of shallow-water carbonate systems, based on a close relationship between field sedimentology and modeling capabilities.
In the present study, the evaluation of three commonly used algorithms Truncated Gaussian Simulation (TGSim), Sequential Indicator Simulation (SISim), and Indicator Kriging (IK), were performed for the first time using visual and quantitative comparisons on an ideally suited carbonate outcrop. The results show that the heterogeneity of carbonate rocks cannot be fully simulated using one single algorithm. The operating mode of each algorithm involves capabilities as well as drawbacks that are not capable to match all field observations carried out across the modeling area.
Two end members in the spectrum of carbonate depositional settings, a low-angle Jurassic ramp (High Atlas, Morocco) and a Triassic isolated platform (Dolomites, Italy), were investigated to obtain a complete overview of the geological heterogeneity in shallow-water carbonate systems. Field sedimentology and statistical analysis performed on the type, morphology, distribution, and association of carbonate bodies and combined with palaeodepositional reconstructions, emphasize similar results. At the basin scale (x 1 km), facies association, composed of facies recording similar depositional conditions, displays linear and ordered transitions between depositional domains. Contrarily, at the bedding scale (x 0.1 km), individual lithofacies type shows a mosaic-like distribution consisting of an arrangement of spatially independent lithofacies bodies along the depositional profile. The increase of spatial disorder from the basin to bedding scale results from the influence of autocyclic factors on the transport and deposition of carbonate sediments.
Scale-dependent types of carbonate heterogeneity are linked with the evaluation of algorithms in order to establish a modeling strategy that considers both the sedimentary characteristics of the outcrop and the modeling capabilities. A surface-based modeling approach was used to model depositional sequences. Facies associations were populated using TGSim to preserve ordered trends between depositional domains. At the lithofacies scale, a fully stochastic approach with SISim was applied to simulate a mosaic-like lithofacies distribution. This new workflow is designed to improve the simulation of carbonate rocks, based on the modeling of each scale of heterogeneity individually.
Contrarily to simulation methods applied in literature, the present study considers that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The implementation of different techniques customized for each level of the stratigraphic hierarchy provides the essential computing flexibility to model carbonate systems. Closer feedback between advances carried out in the field of Sedimentology and Computing Geoscience should be promoted during future outcrop simulations for the enhancement of 3-D geological models. / Das Modellieren von geologischen Aufschlüssen liegt der Schnittstelle zwischen zwei geo-logischen Teildisziplinen, der Sedimentologie und der geologischen Modellierung. Hierbei werden geologische Heterogenitäten untersucht und simuliert, welche im Aufschluss beobachtet wurden. Während der letzten Jahre haben sich die Werkzeuge und die Technik der Modellierung stetig weiter-entwickelt. Parallel dazu hat die Untersuchung der phanerozoischen Karbonatablagerungen ihren Fokus auf gemeinsamen Vorkommen von zufälligen Faziesverteilungen in beiden Ablagerungs-gebieten. Obwohl beide Teildisziplinen durch die Aufschlussmodellierung eigentlich verbunden sind, wurden ihre jeweiligen Vorteile in der Literatur nicht miteinander verbunden, um so eine Verbesserung ähnlicher Studien zu erreichen. Die vorliegende Studie überprüft erneut die Modellierungsstrategie, angepasst an die Simulation von Flachwasser-Karbonat-Systemen und basierend auf einer engen Beziehung zwischen Sedimentologie und Modellierung.
Die vorliegende Arbeit behandelt erstmals die Evaluierung der drei am häufigsten verwendeten Algorithmen „Truncated Gaussian Simulation (TGSim)“, „Sequential Indicator Simulation (SISim)“ und „Indicator Kriging (IK)“, um sie visuell und quantitativ mit dem entsprechenden Aufschluss zu vergleichen. Die Ergebnisse zeigen, dass die Heterogenität von Karbonatgesteinen nicht komplett mit nur einem Algorithmus simuliert werden kann. Die Eigenschaften jedes einzelnen Algorithmus beinhalten Vor- und Nachteile, sodass kein Algorithmus alle Beobachtungen aus dem Aufschluss widerspiegelt.
Die zwei Endglieder im Spektrum der Ablagerungsbedingungen von Karbonaten, eine flachwinklige, jurassische Karbonat-Rampe (Hoher Atlas, Marokko) und eine isolierte, triassische Plattform (Dolomiten, Italien), wurden untersucht, um einen kompletten Überblick über die verschiedenen Heterogenitäten in Flachwasser-Karbonat- Systemen zu erhalten. Sedimentologische und statistische Analysen wurden für die verschiedenen Typen, Morphologien, Verteilungen und Assoziationen von Karbonatablagerungen durchgeführt und mit paläogeografischen Rekonstruktionen kombiniert und zeigen ähnliche Ergebnisse. Im Beckenmaßstab zeigen die Faziesassoziationen, bestehend aus Fazieszonen mit ähnlichen Ablagerungsbedingungen, einen linearen und kontinuierlichen Übergang zwischen den einzelnen Ablagerungsbereichen. Im Gegensatz dazu zeigt für einzelne Lithofaziestypen im Maßstab einzelner Schichten eine mosaikartige Verteilung, bestehend aus einer Anordnung räumlich unabhängiger Lithofazieszonen entlang des Ablagerungsprofils. Das Ansteigen der räumlichen Unordnung von der beckenweiten Ablagerung zur Ablagerung einzelner Schichten resultiert aus dem Einfluss autozyklischer Faktoren bei der Ablagerung von Karbonaten.
Die Skalenabhängigkeit von Karbonat-Heterogenität ist mit der Auswertung der Algorithmen verknüpft um eine Modellierungsstrategie zu etablieren, welche sowohl die sedimentären Charakteristiken des Aufschlusses als auch die Modellierfähigkeit berücksichtigt. Für die Modellierung der Ablagerungssequenzen wurde ein flächenbasierter Ansatz verwendet. Die Faziesassoziationen wurden durch die Benutzung des TGSim-Algorithmus simuliert, um die regulären Trends zwischen den einzelnen Ablagerungsgebieten zu erhalten. Im Bereich der verschiedenen Lithofazien wurde mit dem SISim-Algorithmus, ein voll stochastischer Ansatz angewendet, um die mosaikartige Verteilung der Lithofazies-Typen zu simulieren. Dieser neue Arbeitsablauf wurde konzipiert, um die Simulierung von Karbonaten auf Basis der einzelnen Heterogenitäten in verschiedenen Größenordnungen zu verbessern. Im Gegensatz zu den in der Literatur angewendeten Simulationsmethoden berücksichtigt diese Studie, dass eine einzelne Modellierungstechnik die natürlichen Ablagerungsmuster und Variabilität von Karbonaten wahrscheinlich nicht korrekt abbildet. Die Einführung verschiedener Techniken, angepasst auf die verschiedenen Ebenen der stratigrafischen Hierarchie, liefert die notwendige Flexibilität um Karbonatsysteme korrekt zu modellieren. Eine enge Verknüpfung zwischen den Fortschritten auf dem Gebieten der Sedimentologie und dem Gebiet der modellierenden Geowissenschaften sollte weiterhin bestehen, um auch zukünftig bei der Simulation von geologischen Gelände-Aufschlüssen eine Verbesserung der 3-D-Modellierung zu erreichen.
|
Page generated in 0.0547 seconds