• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Massenbilanzierung einer Wirbelschichtgranulierung / Mass balance of a fluidized bed granulation process

Köster, Ulf January 2001 (has links) (PDF)
In der vorliegenden Arbeit wird die Massenbilanzierung einer Wirbelschicht-granulierung implementiert. Durch die umfangreiche Instrumentierung eines Laborgerätes zum Wirbelschichtgranulieren im Top-Spray-Verfahren (Glatt GPCG 1.1, Binzen, Deutschland) ist es möglich, die relative Luftfeuchte, die Temperatur und den Absolutdruck der Frischluft sowie der Abluft und ferner den Luftvolumenstrom zu messen. Die Berechnung der Dichten der feuchten Luft ermöglicht den Übergang zu Massenströmen von Luft und von Wasser. Aus der Differenz von in die Anlage eingebrachtem und herausgefördertem Wasser wird auf die aktuelle Masse an Wasser im Granulationsansatz geschlossen. Voraussetzung für eine derartige Massenbilanzierung ist dabei eine sehr präzise Bestimmung sämtlicher relevanter Parameter. Die relative Luftfeuchte wird mit kapazitiven Feuchtesensoren gemessen, die einem neu entwickelten Kalibrierverfahren unterzogen werden. Da das Ansprechverhalten der Feuchtesensoren einen kritischen Prozeßparameter darstellt, werden Vergleichsmessungen mit akustischen Feuchtesensoren durchgeführt. Die Messung des Volumenstroms erfolgt durch ein ungedämpftes Flügelradanemometer. Zur Kalibrierung dieses Sensors werden mit einem Hitzedrahtanemometer Strömungsprofile in einer Einlaufstrecke bei verschiedenen Volumenstrombedingungen aufgenommen. Aus der Integration der Strömungsgeschwindigkeit über den Rohrquerschnitt wird der aktuelle Volumenstrom ermittelt. In der gesamten Anlage herrschen stets turbulente Strömungsverhältnisse. Voraussetzung für die Massenbilanzierung ist, dass im Bereich der Feuchtemessstellen sämtliches Wasser gasförmig vorliegt, da Kondensat nicht von den Feuchtesensoren erfasst wird. Durch Messung der Rohrwandtemperatur und Berechnung der Taupunkttemperatur der Abluft kann eine Kondensation von Wasser an der Stelle der Abluftfeuchtemessung ausgeschlossen werden. Durch Anwendung der Massenbilanzierungsrechnung kann gezeigt werden, dass der Wassergehalt im Granulationsgefäß im Verlauf der Sprühphase kontinuierlich ansteigt, um während der Trocknungsphase in drei Trocknungsabschnitten wieder auf den Ausgangswert zurückzugehen. Mit dieser Arbeit werden die Voraussetzungen für die umfassende Steuerung von Wirbelschichtgranulationsanlagen sowie der darin stattfindenden Granulationsprozesse gelegt. / The aim of the present work was the implementation of a mass balance of a fluidized bed granulation process. By the use of an extensive instrumentation of a laboratory-scale fluidized bed granulator that operates with a top-spray methode (Glatt GPCG 1.1, Binzen, Germany) it is possible to measure the relative humidity, the temperature and the absolute pressure of the fresh as well as of the outlet air and in addition the volume flow. The calculation of the density of moist air allows the transfer to mass flows of air and of water. The current mass of water inside the granulation chamber is gathered by the difference of water transferred into and transported out of the granulator. The very precise determination of all relevant parameters is a prerequisite for such a kind of mass balance calculation. The relative humidity is measured with capacitive humidity sensors, which were subjected to a newly developed calibration methode. As the response time of the humidity sensors is a crucial process parameter, reference measurements with acoustic humidity sensors are conducted. The measurement of the volume flow of the fresh air is realized by an undamped propeller-type flowrate meter. For the calibration of this sensor air flow velocity profiles inside the tube are recorded with a hot-wire anemometer under several constant volume flow conditions. The integration of the air flow velocity over the whole tube cross section results in the effective volume flow. Turbulent flow is observed throughout the machine at each point of time. As condensed water can not be recorded by the sensing elements, it is a precondition for the mass balance calculation that the complete mass of water is in its gaseous state at the zone of the humidity sensors. By temperature-measurements at the wall of the tubes and the calculation of the dew point of the outlet air a water-condensation at this region can be excluded. By application of the mass balance calculation it can be shown that the mass of water inside the granulation vessel increases continuously during the spraying phase, to return to the initial value during three different drying stages. The results presented in this thesis provide the prerequisites for a comprehensive control system for fluidized bed granulators as well as the according granulation processes.
2

Konzept verallgemeinerungsfähiger Module für die Sachbilanz von Produktionsprozessen

Roth, Stefan. Unknown Date (has links)
Techn. Universiẗat, Diss., 2001--Berlin.
3

Rohstoffliche und verfahrenstechnische Einflussfaktoren der Pyrolyse biogener Rohstoffe

Reichel, Denise 13 September 2017 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit rohstofflichen und verfahrenstechnischen Einflussfaktoren bei der Biomassepyrolyse. Ausgehend von der Entwicklung einer kleintechnischen Festbettpyrolyseapparatur, erfolgten experimentelle Untersuchungen an 26 biogenen Einsatzstoffen unter verschiedenen Prozessbedingungen. Die Apparatur erlaubt eine vollständige Bilanzierung und Gewinnung aller Produkte, zudem können Einflüsse durch sekundäre Reaktionen in der Gasphase minimiert werden. Die Einsatzstoffe, welche u. a. auch Zellstoff, Xylan und Alkali-Lignin einschließen, wurden hinsichtlich brennstofftechnischer und physikalischer Eigenschaften sowie der Stoffgruppenzusammensetzung charakterisiert. Sie repräsentieren eine große Bandbreite möglicher Zusammensetzungen. Bei den Prozessparametern wurde die Pyrolysetemperatur im Bereich von 200 bis 750 °C, die Aufheizrate zwischen 5 und 100 K/min, die Feststoffverweilzeit von 0 bis 30 min sowie die Partikelgröße (0 bis 5 mm) variiert. Aus den Untersuchungen zum Einfluss der Prozessparameter für die verschiedenen Einsatzstoffe wurden unter Anwendung einer geeigneten Bilanzierungsmethodik geschlossene Masse- und Elementbilanzen für jeden Versuchspunkt aufgestellt. Unter den Prozessvariablen konnte die Temperatur erwartungsgemäß als wichtigste Einflussgröße identifiziert werden. Der zweistufige Zersetzungsverlauf der Biomassen ermöglicht die mathematische Beschreibung der temperaturabhängigen Ausbeuten mittels der zweistufigen Boltzmann-Funktion für den gesamten Temperaturbereich mit hohen Bestimmtheitsmaßen. Die rohstofflichen Einflussgrößen wurden unter Anwendung der Rangkorrelationsmethode nach Spearman und der Produkt-Moment-Korrelation nach Pearson mit den definierten Zielgrößen (Ausbeuten, Produktzusammensetzung, Kokseigenschaften, Heizwerte, Energieeinbindung) bei verschiedenen Pyrolysetemperaturen korreliert. Neben der Stoffgruppenzusammensetzung konnten bei den rohstofflichen Einflussfaktoren die Gehalte an Alkalien sowie der Gesamtgehalt an potentiell katalytisch aktiven Bestandteilen (Na, K, Mg, Ca, Fe) als Haupteinflussgrößen identifiziert werden. Korrelationen ergeben sich auch für brennstofftechnische Eigenschaften, wobei neben dem Flüchtigen- und dem Aschegehalt, das O/C-Verhältnis signifikant ist. Die gefundenen statistischen Zusammenhänge können weitestgehend mechanistisch begründet werden. Zur Quantifizierung der ermittelten Zusammenhänge für die Zielgrößen wurden multiple Regressionsmodelle erstellt und anhand von Bestimmtheitsmaß, Informationskriterium und mittleren Modellfehlern bewertet. Somit konnten 42 Regressionsgleichungen für die Produktausbeuten bei verschiedenen Pyrolysetemperaturen entwickelt werden, die auf den Gehalten verschiedener Stoffgruppen und dem Gesamtgehalt an katalytisch aktiven Elementen basieren. Weitere 56 Regressionsgleichungen stehen für die Berechnung von Teer/Öl-Elementarzusammensetzung, Kokszusammensetzung, Teer/Öl-Heizwert sowie Energieeinbindung im Koks bei verschiedenen Pyrolysetemperaturen zur Verfügung. Die Prognoseeignung der Gleichungen wurde anhand eines weiteren Datensatzes für Apfeltrester überprüft. Für die Koks-, die Gas- und die Kondensatausbeute sowie die genannten Produkteigenschaften ergab sich eine gute Vorhersagequalität, die jedoch stark von der verwendeten Gleichung abhängt. Die Validierung mit Literaturdaten konnte aufgrund fehlender Datensätze, die sowohl die notwendigen Rohstoffparameter als auch Produktausbeuten und -eigenschaften enthalten, nur anhand der Koksausbeute erfolgen. Für verschiedene Biomassen und biogene Reststoffe führte dies zu einer guten Anpassung. Die mathematische Beschreibung der Ausbeuten und bestimmter Produkteigenschaften über Regressionsgleichungen auf Grundlage von Rohstoffparametern stellt einen vielversprechenden Ansatz für die Vorhersage der maximalen Ausbeuten bei bestimmten Bedingungen dar. Dies ermöglicht eine Abschätzung zur Einsatzeignung von Biomassen bzw. biogenen Reststoffen für verschiedene Anwendungszwecke. Bisher existiert kein derartiges Modell zur Vorhersage der definierten Zielgrößen. Grundsätzlich wäre die Entwicklung einfacher Gleichungen mit wenigen, einfach bestimmbaren und standardisierten Parametern erstrebenswert. Die Ergebnisse haben jedoch gezeigt, dass Ein-Variablen-Modelle die Trends zwischen den Biomassen aufgrund der komplexen Zusammenhänge zwischen Pyrolyseverhalten und Rohstoffparametern häufig nicht richtig wiedergeben können. Für robuste Modelle sind somit mindestens zwei unabhängige Modellparameter mit idealerweise gegensätzlichem Einfluss notwendig. / The intention of this work was an intensive study of the influence of feedstock properties and process variables on biomass pyrolysis. Due to a lack in consistent data sets, including various feedstock parameters as well as product yields, compositions, and further properties, a laboratory fixed bed reactor was developed to overcome this problem. The pyrolysis reactor was used for experiments with 26 biogenous feedstock under variable process conditions. The reactor is suitable to assure nearly closed mass balances and a complete product recovery. Furthermore, it allows the minimization of secondary reactions. The used feedstock, which include cellulose, xylan, and lignin amongst others, represent a broad range of possible compositions and were intensively characterized by determination of fuel and physical properties as well as biopolymer composition. The varied process parameters are: temperature between 200 and 700 °C, heating rate in the range of 5 to 100 K/min, solid residence time from 0 to 30 min, and particle size up to 5 mm. Closed mass and element balances were done for every set of parameters. As expected, amongst process variables the temperature was identified as the main factor influencing biomass pyrolysis. The temperature depending products yields could be fitted well by the double boltzmann approach due to the two-stage pyrolytic decomposition of biomass. Correlation of feedstock properties with different target parameters, including yields, product composition, heating values, remaining energy content in char, and char properties, was done by Spearman´s rank correlation and Pearson´s correlation for different temperatures. Biopolymer composition as well as alkaline content and total content of potential catalytic elements (Na, K, Ca, Mg, Fe) were identified as main factors influencing biomass pyrolysis product yields and compositions. Further correlations arise with fuel properties like volatile matter and ash content besides O/C atomic ratio. The obtained correlations can be mainly related to pyrolysis mechanisms. The received relationships were quantified by means of multiple regression models. Model evaluation was done by coefficient of determination, information criteria and mean squared errors. 42 regression models, based on different biopolymer contents and the total content of catalytic elements, were provided for the mathematical description of product yields for different process temperatures. Another 56 equations are suitable for the calculation of product properties like tar/oil and char composition, tar/oil heating value, and remaining energy content in the char at different temperatures. The predictability of the regression models was proved using another data set for apple pomace. The yields of char, gas, and condensate as well as the aforementioned product properties can be predicted very well, although, the predictability varies with the applied equation. Validation of the models by literature data was only possible for the char yield, because of the mentioned lack in suitable and complete data sets. Application of regression model to fixed bed char yields for different biomass and biogenous residues from literature resulted in a good predictability. Mathematical description of pyrolysis product yields and properties by means of regression models based on feedstock parameters is a promising approach to predict maximum yields at defined conditions and, therefore, to make an estimation of suitability of the biomass to different applications. Up to now such models do not exist. In general, the development of simple equations based on a few standardized parameters which are easy to determine is worthwhile. Hence, the results showed that the overall trend between different biomass feeds was often not predicted correctly using one-parameter models. This is due to the complex relationships between pyrolysis behavior and feedstock properties. Consequently, at least two parameter models, where the variables show the opposite trends, were most appropriate.
4

Rohstoffliche und verfahrenstechnische Einflussfaktoren der Pyrolyse biogener Rohstoffe

Reichel, Denise 18 May 2017 (has links)
Die vorliegende Arbeit beschäftigt sich mit rohstofflichen und verfahrenstechnischen Einflussfaktoren bei der Biomassepyrolyse. Ausgehend von der Entwicklung einer kleintechnischen Festbettpyrolyseapparatur, erfolgten experimentelle Untersuchungen an 26 biogenen Einsatzstoffen unter verschiedenen Prozessbedingungen. Die Apparatur erlaubt eine vollständige Bilanzierung und Gewinnung aller Produkte, zudem können Einflüsse durch sekundäre Reaktionen in der Gasphase minimiert werden. Die Einsatzstoffe, welche u. a. auch Zellstoff, Xylan und Alkali-Lignin einschließen, wurden hinsichtlich brennstofftechnischer und physikalischer Eigenschaften sowie der Stoffgruppenzusammensetzung charakterisiert. Sie repräsentieren eine große Bandbreite möglicher Zusammensetzungen. Bei den Prozessparametern wurde die Pyrolysetemperatur im Bereich von 200 bis 750 °C, die Aufheizrate zwischen 5 und 100 K/min, die Feststoffverweilzeit von 0 bis 30 min sowie die Partikelgröße (0 bis 5 mm) variiert. Aus den Untersuchungen zum Einfluss der Prozessparameter für die verschiedenen Einsatzstoffe wurden unter Anwendung einer geeigneten Bilanzierungsmethodik geschlossene Masse- und Elementbilanzen für jeden Versuchspunkt aufgestellt. Unter den Prozessvariablen konnte die Temperatur erwartungsgemäß als wichtigste Einflussgröße identifiziert werden. Der zweistufige Zersetzungsverlauf der Biomassen ermöglicht die mathematische Beschreibung der temperaturabhängigen Ausbeuten mittels der zweistufigen Boltzmann-Funktion für den gesamten Temperaturbereich mit hohen Bestimmtheitsmaßen. Die rohstofflichen Einflussgrößen wurden unter Anwendung der Rangkorrelationsmethode nach Spearman und der Produkt-Moment-Korrelation nach Pearson mit den definierten Zielgrößen (Ausbeuten, Produktzusammensetzung, Kokseigenschaften, Heizwerte, Energieeinbindung) bei verschiedenen Pyrolysetemperaturen korreliert. Neben der Stoffgruppenzusammensetzung konnten bei den rohstofflichen Einflussfaktoren die Gehalte an Alkalien sowie der Gesamtgehalt an potentiell katalytisch aktiven Bestandteilen (Na, K, Mg, Ca, Fe) als Haupteinflussgrößen identifiziert werden. Korrelationen ergeben sich auch für brennstofftechnische Eigenschaften, wobei neben dem Flüchtigen- und dem Aschegehalt, das O/C-Verhältnis signifikant ist. Die gefundenen statistischen Zusammenhänge können weitestgehend mechanistisch begründet werden. Zur Quantifizierung der ermittelten Zusammenhänge für die Zielgrößen wurden multiple Regressionsmodelle erstellt und anhand von Bestimmtheitsmaß, Informationskriterium und mittleren Modellfehlern bewertet. Somit konnten 42 Regressionsgleichungen für die Produktausbeuten bei verschiedenen Pyrolysetemperaturen entwickelt werden, die auf den Gehalten verschiedener Stoffgruppen und dem Gesamtgehalt an katalytisch aktiven Elementen basieren. Weitere 56 Regressionsgleichungen stehen für die Berechnung von Teer/Öl-Elementarzusammensetzung, Kokszusammensetzung, Teer/Öl-Heizwert sowie Energieeinbindung im Koks bei verschiedenen Pyrolysetemperaturen zur Verfügung. Die Prognoseeignung der Gleichungen wurde anhand eines weiteren Datensatzes für Apfeltrester überprüft. Für die Koks-, die Gas- und die Kondensatausbeute sowie die genannten Produkteigenschaften ergab sich eine gute Vorhersagequalität, die jedoch stark von der verwendeten Gleichung abhängt. Die Validierung mit Literaturdaten konnte aufgrund fehlender Datensätze, die sowohl die notwendigen Rohstoffparameter als auch Produktausbeuten und -eigenschaften enthalten, nur anhand der Koksausbeute erfolgen. Für verschiedene Biomassen und biogene Reststoffe führte dies zu einer guten Anpassung. Die mathematische Beschreibung der Ausbeuten und bestimmter Produkteigenschaften über Regressionsgleichungen auf Grundlage von Rohstoffparametern stellt einen vielversprechenden Ansatz für die Vorhersage der maximalen Ausbeuten bei bestimmten Bedingungen dar. Dies ermöglicht eine Abschätzung zur Einsatzeignung von Biomassen bzw. biogenen Reststoffen für verschiedene Anwendungszwecke. Bisher existiert kein derartiges Modell zur Vorhersage der definierten Zielgrößen. Grundsätzlich wäre die Entwicklung einfacher Gleichungen mit wenigen, einfach bestimmbaren und standardisierten Parametern erstrebenswert. Die Ergebnisse haben jedoch gezeigt, dass Ein-Variablen-Modelle die Trends zwischen den Biomassen aufgrund der komplexen Zusammenhänge zwischen Pyrolyseverhalten und Rohstoffparametern häufig nicht richtig wiedergeben können. Für robuste Modelle sind somit mindestens zwei unabhängige Modellparameter mit idealerweise gegensätzlichem Einfluss notwendig.:Abkürzungs- und Symbolverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Einleitung und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Kenntnisstand . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Zusammensetzung und Struktur von Lignocellulosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Allgemeine chemische Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Struktureller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Vorkommen und Einbindungsformen von anorganischen Bestandteilen . . . . . . . . . . . . . . . . . . . 14 2.2 Möglichkeiten zur Untersuchung der Pyrolyse von Biomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Verwendete Reaktoren zur Untersuchung der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Reaktionsabläufe bei der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Einflussfaktoren auf Pyrolyseproduktverteilung und -eigenschaften . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Einfluss rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Einfluss verfahrenstechnischer Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Beschreibung und Vorhersage des Pyrolyseverhaltens von Biomasse . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Empirische Modelle basierend auf statistischen Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Kinetische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Modelle auf Basis der Stoffgruppenzusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 Netzwerkpyrolysemodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Einsatzmaterialien und deren Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Biomassen und Vorbehandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Charakterisierungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Entwicklung einer apparativen Einrichtung zur Bilanzierung des Biomassepyrolyseprozesses . . . 55 3.2.1 Anforderungen und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Konzeption, Dimensionierung und Optimierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Endgültige Konfiguration der Laborpyrolyseanlage (LPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Durchführung der Bilanzversuche an der LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Parametervariationen bei der Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Versuchsvorbereitung und -durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Produktrückgewinnung und -aufarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodik bei der Bilanzierung des Pyrolyseprozesses im Festbettreaktor . . . . . . . . . . . . . . . . . . 69 3.4.1 Bilanzgleichungen und -annahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Ergebnisse zur Charakterisierung der Einsatzmaterialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Brennstofftechnische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Chemisch-strukturelle Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Physikalische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 5 Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Bilanzfehler und Wiederholbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Vergleich der Bilanzierungsvarianten und Bilanzfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Wiederholbarkeit der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Einfluss verfahrenstechnischer Parameter auf Produktverteilung und -zusammensetzung . . . . 94 5.2.1 Einfluss radialer Temperaturgradienten in der Biomasseschüttung . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Pyrolysetemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Empirische Gleichungen für die Temperaturabhängigkeit der Produktausbeuten . . . . . . . . . 103 5.2.4 Aufheizgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.5 Feststoffverweilzeit bei Pyrolyseendtemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Einfluss rohstofflicher Parameter auf Produktverteilung und -zusammensetzung . . . . . . . . . . . 111 5.3.1 Partikelgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.2 Pyrolyse von Zellstoff, Xylan und Alkali-Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Kombinierte Betrachtungen zum Temperatur- und Rohstoffeinfluss . . . . . . . . . . . . . . . . . . . . . 120 6 Mathematische Zusammenhänge zwischen Rohstoffeigenschaften und Pyrolyseverhalten . . . . 133 6.1 Korrelation mit Rohstoffeigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1.3 Schlussfolgerungen zur Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Regressionsanalyse und Multiple Regression zur Beschreibung des Pyrolyseverhaltens . . . . . 155 6.2.1 Modellvergleich am Beispiel der Koksausbeute bei 500 °C . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 Gleichungen zur Berechnung der Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Gleichungen zur Berechnung der Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.4 Schlussfolgerungen zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7 Vorhersagemöglichkeiten für das Pyrolyseverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1 Validierung der Modellgleichungen mit internem Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Validierung mit Literaturdaten zur Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 A Weiterführende Informationen zu Kapitel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 B Weiterführende Informationen zur Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 C Ergebnisse zur Einsatzstoffcharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 D Ergebnisse zum Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . 272 E Ergebnisse zur Korrelation des Pyrolyseverhaltens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 F Ergebnisse zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 G Ergebnisse zur Vorhersage des Pyrolyseverhaltens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 / The intention of this work was an intensive study of the influence of feedstock properties and process variables on biomass pyrolysis. Due to a lack in consistent data sets, including various feedstock parameters as well as product yields, compositions, and further properties, a laboratory fixed bed reactor was developed to overcome this problem. The pyrolysis reactor was used for experiments with 26 biogenous feedstock under variable process conditions. The reactor is suitable to assure nearly closed mass balances and a complete product recovery. Furthermore, it allows the minimization of secondary reactions. The used feedstock, which include cellulose, xylan, and lignin amongst others, represent a broad range of possible compositions and were intensively characterized by determination of fuel and physical properties as well as biopolymer composition. The varied process parameters are: temperature between 200 and 700 °C, heating rate in the range of 5 to 100 K/min, solid residence time from 0 to 30 min, and particle size up to 5 mm. Closed mass and element balances were done for every set of parameters. As expected, amongst process variables the temperature was identified as the main factor influencing biomass pyrolysis. The temperature depending products yields could be fitted well by the double boltzmann approach due to the two-stage pyrolytic decomposition of biomass. Correlation of feedstock properties with different target parameters, including yields, product composition, heating values, remaining energy content in char, and char properties, was done by Spearman´s rank correlation and Pearson´s correlation for different temperatures. Biopolymer composition as well as alkaline content and total content of potential catalytic elements (Na, K, Ca, Mg, Fe) were identified as main factors influencing biomass pyrolysis product yields and compositions. Further correlations arise with fuel properties like volatile matter and ash content besides O/C atomic ratio. The obtained correlations can be mainly related to pyrolysis mechanisms. The received relationships were quantified by means of multiple regression models. Model evaluation was done by coefficient of determination, information criteria and mean squared errors. 42 regression models, based on different biopolymer contents and the total content of catalytic elements, were provided for the mathematical description of product yields for different process temperatures. Another 56 equations are suitable for the calculation of product properties like tar/oil and char composition, tar/oil heating value, and remaining energy content in the char at different temperatures. The predictability of the regression models was proved using another data set for apple pomace. The yields of char, gas, and condensate as well as the aforementioned product properties can be predicted very well, although, the predictability varies with the applied equation. Validation of the models by literature data was only possible for the char yield, because of the mentioned lack in suitable and complete data sets. Application of regression model to fixed bed char yields for different biomass and biogenous residues from literature resulted in a good predictability. Mathematical description of pyrolysis product yields and properties by means of regression models based on feedstock parameters is a promising approach to predict maximum yields at defined conditions and, therefore, to make an estimation of suitability of the biomass to different applications. Up to now such models do not exist. In general, the development of simple equations based on a few standardized parameters which are easy to determine is worthwhile. Hence, the results showed that the overall trend between different biomass feeds was often not predicted correctly using one-parameter models. This is due to the complex relationships between pyrolysis behavior and feedstock properties. Consequently, at least two parameter models, where the variables show the opposite trends, were most appropriate.:Abkürzungs- und Symbolverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Abbildungsverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Tabellenverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii 1 Einleitung und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Kenntnisstand . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Zusammensetzung und Struktur von Lignocellulosen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Allgemeine chemische Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Struktureller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Vorkommen und Einbindungsformen von anorganischen Bestandteilen . . . . . . . . . . . . . . . . . . . 14 2.2 Möglichkeiten zur Untersuchung der Pyrolyse von Biomassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Untersuchungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Verwendete Reaktoren zur Untersuchung der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Reaktionsabläufe bei der Biomassepyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Einflussfaktoren auf Pyrolyseproduktverteilung und -eigenschaften . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Einfluss rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Einfluss verfahrenstechnischer Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Beschreibung und Vorhersage des Pyrolyseverhaltens von Biomasse . . . . . . . . . . . . . . . . . . . . . 39 2.5.1 Empirische Modelle basierend auf statistischen Methoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5.2 Kinetische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5.3 Modelle auf Basis der Stoffgruppenzusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.5.4 Netzwerkpyrolysemodelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6 Schlussfolgerungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Einsatzmaterialien und deren Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Biomassen und Vorbehandlung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.2 Charakterisierungsmethoden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Entwicklung einer apparativen Einrichtung zur Bilanzierung des Biomassepyrolyseprozesses . . . 55 3.2.1 Anforderungen und Zielstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Konzeption, Dimensionierung und Optimierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.3 Endgültige Konfiguration der Laborpyrolyseanlage (LPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Durchführung der Bilanzversuche an der LPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.3.1 Parametervariationen bei der Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Versuchsvorbereitung und -durchführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.3 Produktrückgewinnung und -aufarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Methodik bei der Bilanzierung des Pyrolyseprozesses im Festbettreaktor . . . . . . . . . . . . . . . . . . 69 3.4.1 Bilanzgleichungen und -annahmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.4.2 Fehlerabschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Ergebnisse zur Charakterisierung der Einsatzmaterialien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Brennstofftechnische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2 Chemisch-strukturelle Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.3 Physikalische Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 5 Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1 Bilanzfehler und Wiederholbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.1 Vergleich der Bilanzierungsvarianten und Bilanzfehler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.1.2 Wiederholbarkeit der Ergebnisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Einfluss verfahrenstechnischer Parameter auf Produktverteilung und -zusammensetzung . . . . 94 5.2.1 Einfluss radialer Temperaturgradienten in der Biomasseschüttung . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Pyrolysetemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2.3 Empirische Gleichungen für die Temperaturabhängigkeit der Produktausbeuten . . . . . . . . . 103 5.2.4 Aufheizgeschwindigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2.5 Feststoffverweilzeit bei Pyrolyseendtemperatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Einfluss rohstofflicher Parameter auf Produktverteilung und -zusammensetzung . . . . . . . . . . . 111 5.3.1 Partikelgröße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.2 Pyrolyse von Zellstoff, Xylan und Alkali-Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Kombinierte Betrachtungen zum Temperatur- und Rohstoffeinfluss . . . . . . . . . . . . . . . . . . . . . 120 6 Mathematische Zusammenhänge zwischen Rohstoffeigenschaften und Pyrolyseverhalten . . . . 133 6.1 Korrelation mit Rohstoffeigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.1 Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.1.3 Schlussfolgerungen zur Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2 Regressionsanalyse und Multiple Regression zur Beschreibung des Pyrolyseverhaltens . . . . . 155 6.2.1 Modellvergleich am Beispiel der Koksausbeute bei 500 °C . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.2 Gleichungen zur Berechnung der Produktausbeuten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.2.3 Gleichungen zur Berechnung der Produkteigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.2.4 Schlussfolgerungen zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7 Vorhersagemöglichkeiten für das Pyrolyseverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.1 Validierung der Modellgleichungen mit internem Datensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.2 Validierung mit Literaturdaten zur Festbettpyrolyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8 Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 Literatur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187 Anhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 A Weiterführende Informationen zu Kapitel 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 B Weiterführende Informationen zur Untersuchungsmethodik . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 C Ergebnisse zur Einsatzstoffcharakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 D Ergebnisse zum Einfluss verfahrenstechnischer und rohstofflicher Parameter . . . . . . . . . . . . . . . 272 E Ergebnisse zur Korrelation des Pyrolyseverhaltens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314 F Ergebnisse zur Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348 G Ergebnisse zur Vorhersage des Pyrolyseverhaltens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361
5

Methodenhandbuch Stoffstromorientierte Bilanzierung der Klimagaseffekte: Methoden zur Bestimmung von Technologiekennwerten, Gestehungskosten und Klimagaseffekten von Vorhaben im Rahmen des BMU-Förderprogramms „Energetische Biomassenutzung“

Thrän, Daniela, Pfeiffer, Diana 18 July 2022 (has links)
Optimierungen mit mehr als einer Zielgröße haben es in sich – das weiß jeder Forscher und jede Forscherin, die sich mit der Weiterentwicklung von Prozessen und Konzepten beschäftigt hat. Effizienter Klimaschutz, Energieeffizienz und Nachhaltigkeit sind die Ziele, denen sich das BMU-Förderprogramm zur „Optimierung der energetischen Biomassenutzung“ (Kurztitel: „Energetische Biomassenutzung“) im Rahmen der Klimaschutzinitiative verschrieben hat. Auch wenn diese Ziele auf den ersten Blick nicht widersprüchlich erscheinen, ergeben sich doch bei näherem Hinsehen generelle Definitionsfragen (z. B. was ist ein nachhaltiges Biomassepotenzial) als auch Unwägbarkeiten, in wieweit man sich das eine im Detail vornehmen und das andere trotzdem lassen kann (z. B. bei der Betrachtung von Umwelteffekten). Und Optimierung braucht immer Messgrößen für ihre Bestimmung. Auch hier sind von generellen Fragen bis hin zur spezifischen Festlegung der Systemgrenzen ein Strauß von Einzelfragen aufgeworfen – ohne Aussicht auf zweifelsfreie und allgemeingültige Antworten. In der Summe heißt das: Der Versuch, Bewertungsmethoden zu harmonisieren und einfach und transparent möglichst vielen Forschungsvorhaben verfügbar zu machen, ist risikobehaftet, mühsam und im Ergebnis immer ein Kompromiss. Das hier vorgelegte Methodenhandbuch versteht sich als eben solcher Kompromiss: es bietet Ansatzstellen, die vielfältigen Einzelvorhaben des Programms „Energetische Biomassenutzung“ zusammen zu führen und die Anschlussfähigkeit der Bewertungsergebnisse zu verbessern. Die vorgeschlagenen Dokumentationsvorlagen und Methoden basieren dabei auf dem Stand der Wissenschaft und reichen von der Berichterstattung (wie vorgegangen wurde) bis zur detailliert benannten Berechnungsmethode. Sie beschränken sich auf ausgewählte Fragestellungen und liefern keine vollständige Nachhaltigkeitsbewertung. Es ist das Ergebnis eines vierjährigen Diskussionsprozesses, für dessen Unterstützung ich allen Programmbeteiligten danke. Wertvolle Beiträge wurden in Arbeitsgruppen und Workshops generiert, an dieser Stelle sei das Engagement der Arbeitsgruppen „Potenziale“, „Ökobilanzen“, „Thermochemische Vergasung“ und „Referenzsysteme“ besonders erwähnt. Die hier vorgelegte Fassung des Methodenhandbuchs steht nun zur Anwendung zur Verfügung und bildet mit den abgestimmten Referenzsystemen nicht zuletzt auch eine Brücke zur Gesamteinordnung der Forschungsvorhaben und des Förderprogramms in die Klimaschutzinitiative der Bundesregierung. Zweifelsohne können die dargestellten Ansätze und Berechnungsverfahren nur einen ersten Aufschlag darstellen, der sowohl wissenschaftlich als auch in der praktischen Anwendung weiter entwickelt werden kann und soll. Für diese und die weiteren Herausforderungen rund um Methodenharmonisierungen ist auch in Zukunft die konstruktive und fruchtbare Zusammenarbeit im Programm unerlässlich. Dahinter stehen unverändert das Ziel und die Notwendigkeit, die energetische Biomassenutzung Schritt für Schritt weiter zu optimieren.
6

Methodenhandbuch Stoffstromorientierte Bilanzierung der Klimagaseffekte: Methoden zur Bestimmung von Technologiekennwerten, Gestehungskosten und Klimagaseffekten von Vorhaben im Rahmen des BMU-Förderprogramms „Energetische Biomassenutzung“

Thrän, Daniela, Pfeiffer, Diana 01 August 2022 (has links)
Optimierungen mit mehr als einer Zielgröße haben es in sich – das weiß jeder Forscher und jede Forscherin, die sich mit der Weiterentwicklung von Prozessen und Konzepten beschäftigt hat. Reduktion der Treibhausgasemissionen und Energieeffizienz bei gleichzeitiger Versorgungssicherheit und Wettbewerbsfähigkeit sind die Ziele, denen sich das BMWi-Forschungsnetzwerk Bioenergie im Rahmen des 7. Energieforschungsprogramms verschrieben hat. Um diesem Zielbündel gerecht zu werden, müssen Begrifflichkeiten (z. B. was ist ein nachhaltiges Biomassepotenzial), generelle Bewertungsgrößen (z. B. für die gemeinsame Betrachtung von Treibhausgasreduktion und Energieeffizienz) als auch Erwartungen an die Detailtiefe, also was kann weggelassen werden, ohne das Gesamtergebnis zu verfälschen bzw. zu sehr zu beeinflussen (z. B. bei der Betrachtung von Umwelteffekten) im Vorfeld und projektübergreifend festgelegt werden. Und Verbesserung und Optimierung braucht immer Messgrößen für ihre Bestimmung. Auch hier sind von generellen Fragen bis hin zur spezifischen Festlegung der Systemgrenzen ein Strauß von Einzelfragen aufgeworfen – ohne Aussicht auf zweifelsfreie und allgemeingültige Antworten. In der Summe heißt das: Der Versuch, Bewertungsmethoden zu harmonisieren und einfach und transparent möglichst vielen Forschungsvorhaben verfügbar zu machen, ist risikobehaftet, mühsam und im Ergebnis immer ein Kompromiss. Das hier vorgelegte Methodenhandbuch versteht sich als eben solcher Kompromiss: es bietet Ansatzstellen, die vielfältigen Einzelvorhaben des Forschungsnetzwerkes Bioenergie zusammen zu führen und die Anschlussfähigkeit der Bewertungsergebnisse zu verbessern. Die vorgeschlagenen Dokumentationsvorlagen und Methoden basieren dabei auf dem Stand der Wissenschaft und reichen von der Berichterstattung (wie vorgegangen wurde) bis zur detailliert benannten Berechnungsmethode. Sie beschränken sich auf ausgewählte Fragestellungen und liefern keine vollständige Nachhaltigkeitsbewertung. Die nun 5. Ausgabe ist das Ergebnis eines dreijährigen Diskussionsprozesses, für dessen Unterstützung ich allen Beteiligten danke. Wertvolle Beiträge wurden in Arbeitsgruppen und Workshops des Netzwerks generiert.. Erstmals beziehen die Bewertungsansätze auch die flexible Energiebereitstellung mit in die Betrachtungen ein. Die hier vorgelegte Fassung des Methodenhandbuchs steht nun zur Anwendung zur Verfügung und bildet mit den abgestimmten Referenzsystemen nicht zuletzt auch eine Brücke zur Gesamteinordnung der Forschungsvorhaben und des Netzwerks in das Energieforschungsprogramm der Bundesregierung. Zweifelsohne können die dargestellten Ansätze und Berechnungsverfahren nur einen ersten Aufschlag darstellen, der sowohl wissenschaftlich als auch in der praktischen Anwendung weiterentwickelt werden kann und soll. Für diese und die weiteren Herausforderungen rund um Methodenharmonisierungen ist auch in Zukunft die konstruktive und fruchtbare Zusammenarbeit im Netzwerk unerlässlich. Dahinter stehen unverändert das Ziel und die Notwendigkeit, die energetische Biomassenutzung Schritt für Schritt weiter zu optimieren / It is not an easy task trying to optimise the production of bioenergy with more than one target in mind – every researcher who deals with the development of processes and ideas is well aware of this this. The reduction of greenhouse gas emissions and energy efficiency combined with security of supply and competitiveness are the goals to which the BMWi Bioenergy Research Network has committed itself within the framework of the 7th Energy Research Programme.. To meet this set of goas, concepts (e. g. what is a sustainable biomass potential), general evaluation parameters (e. g. for the joint assessment of greenhouse gas reduction and energy efficiency) as well as expectations of the level of detail, i. e. what can be omitted without distorting the overall result or influencing it too much (e. g. when considering environmental effects) must be defined in advance and across the projects. Furthermore, improvement and optimisation always requires more empirical data to determine the limits of the system. Without these pieces of information the level of uncertainty becomes even more greater making the validity of results more difficult to conclude. The implications of this is that there is a great need to provide transparency and harmonisation amongst evaluation methods. The only means of doing so is by providing information and empirical data for as many research projects as possible. This is an arduous task and in many cases can be fraught with risk for the researcher involved and will no doubt always end in some sort of compromise. This method handbook considers itself to be such a compromise: it provides points of contact which bring together the diverse projects of the Bioenergy Research Network and as such improves the connectivity of the evaluation findings. The suggested method documentations are based on the current state of scientific knowledge and range from qualitative descriptions of methods to detailed calculation methods. They are limited to selected questions and provide no guideline for complete evaluation of sustainability. The 5th edition of the method handbook is the result of a three- year discussion process, for which I would like to thank all those who participated. Valuable contributions were generated in working groups and workshops of the research network. For the first time, the assessment approaches also include flexible energy supply. This version of the method handbook is now ready to be used and through its coordinated reference systems, forms a bridge for the overall classification of the research projects and the research network as part of the federal government’s energy research programme. Without doubt, the approaches and calculation procedures listed here only represent a starting point; from further developments can be based upon, both scientifically and in practical applications. Future constructive and fruitful collaborations within the network are essential for this and other challenges surrounding the harmonisation of methods. All this is still driven by the need and the goal to further optimise, little by little, the use of biomass in energy production.
7

Method handbook material flow-oriented assessment of greenhouse gas effects: Methods for determination of technology indicators, levelized costs of energy and greenhouse gas effects of projects in the funding programme “Biomass energy use”

Thrän, Daniela, Pfeiffer, Diana 02 August 2022 (has links)
This method handbook tries to provide such a compromise: it gives guidance for diverse projects of the programme 'Biomass energy use' and as such improves the connectivity of the evaluation fi ndings. The suggested method documentations are based on the current state of scientifi c knowledge and range from qualitative descriptions of methods to detailed calculation methods. They are limited to selected questions and provide no complete evaluation of sustainability. It is the result of a four-year discussion process, enriched by the project partners of the funding programme. Valuable contribution were generated in working groups and at various workshops. Here the dedication of the working groups 'Biomass Potentials', 'Life-cycle Assessment', 'Thermochemical Gasifi cation' and 'Reference Systems' should be particularly mentioned. This version of the method handbook is now established and through its coordinated reference systems it forms a bridge for the overall classifi cation of the research projects and the funding programme in the framework of the German climate protection discourse. Without doubt, the approaches and calculation procedures listed here only represent a starting point; on which further developments can be based upon, both scientifi cally and in practical applications. Future constructive and fruitful collaborations within the programme are essential for this and other challenges surrounding the harmonisation of methods. All this is still driven by the need and the goal to further optimise, little by little, the use of biomass in energy production.

Page generated in 0.0591 seconds