• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human brain activity during stone tool production : tracing the evolution of cognition and language

Putt, Shelby Stackhouse 01 July 2016 (has links)
This study aims to shed light on how and when mechanisms of the human brain evolved to support complex cognition and language. The field of evolutionary cognitive archaeology asserts that prehistoric technologies, as products of past cognition in action, are informative of the minimum cognitive and linguistic abilities that hominins needed to possess for their production. Previous researchers attempted to reconstruct the neural correlates of two Early Stone Age (ESA) tool industries, the 2.6 million-year-old Oldowan industry and the 0.7 million-year-old late Acheulian industry, by using positron emission tomography (PET) to observe the functional activation occurring in the brains of trained and expert stone knappers after making these different tool types. Because of evidence for overlap between the knapping and language circuits of the brain and increased anterior frontal activity during Acheulian tool production, these researchers argued that their results 1) indicate increased cognitive demands for late Acheulian tool production relative to Oldowan tool production and 2) support a technological origin for language, meaning that certain language functions co-opted the neural substrate and functions that were already established for toolmaking and tool use. Because of the motion limiting aspects of PET, however, these studies were unable to record the hemodynamic response of naturalistic stone knapping in real-time. They also were unable to observe the functional activation associated with the earliest stage of learning, which is likely to differ from late stage learning or expertise. Furthermore, any conclusion regarding a technological origin for language is problematic if it relies on data obtained from participants who learned to knap with verbal instruction. To test these two claims, this dissertation utilized a neuroimaging technique called functional near-infrared spectroscopy (fNIRS) to explore the neural correlates of real-time, naturalistic Oldowan and Acheulian stone knapping at three different points in learning. Participants in the study were separated into two groups to learn ESA knapping skills. Both groups watched the same video tutorials that depicted an expert’s hands as he made stone tools, but those in the verbal group heard spoken instructions, while those in the nonverbal group watched a version with the sound turned off. Functional brain images were reconstructed from the digitized landmarks of each participant’s head and from the optical data. An analysis of variance (ANOVA) revealed a clearer distinction between the neural processes of Oldowan and Acheulian tool manufacturing tasks than has previously been demonstrated. Only the Acheulian task recruited a frontotemporal working memory network. Selection for individuals with increased working memory capacities, which would have allowed them to make increasingly complex tools to gain access to novel dietary items, may have spurred the evolution of larger brain size in the genus Homo during the early Pleistocene. The results also demonstrated that the presence or absence of language during training dictated which higher-order cognitive areas of the brain become engaged and at what point in training. Thus, the results of previous neuroarchaeological studies reflect a very specific condition of stone knapping skill acquisition that involves linguistic instruction, which may not be analogous to how skills were transmitted during the ESA. Finally, evidence of overlap between left hemisphere language and stone knapping circuits among the participants in the nonverbal group lends additional support for the technological origin for language hypothesis.
2

What Makes the Cut: The Influence of Form on Clovis Knife Cutting Efficiency

Mika, Anna 21 April 2022 (has links)
No description available.
3

A Formal Modeling Approach to Understanding Stone Tool Raw Material Selection in the African Middle Stone Age: A Case Study from Pinnacle Point, South Africa

January 2017 (has links)
abstract: The South African Middle Stone Age (MSA), spanning the Middle to Late Pleistocene (Marine Isotope Stages (MIS) 8-3) witnessed major climatic and environmental change and dramatic change in forager technological organization including lithic raw material selection. Homo sapiens emerged during the MSA and had to make decisions about how to organize technology to cope with environmental stressors, including lithic raw material selection, which can effect tool production and application, and mobility. This project studied the role and importance of lithic raw materials in the technological organization of foragers by focusing on why lithic raw material selection sometimes changed when the behavioral and environmental context changed. The study used the Pinnacle Point (PP) MSA record (MIS6-3) in the Mossel Bay region, South Africa as the test case. In this region, quartzite and silcrete with dramatically different properties were the two most frequently exploited raw materials, and their relative abundances change significantly through time. Several explanations intertwined with major research questions over the origins of modern humans have been proposed for this change. Two alternative lithic raw material procurement models were considered. The first, a computational model termed the Opportunistic Acquisition Model, posits that archaeological lithic raw material frequencies are due to opportunistic encounters during random walk. The second, an analytical model termed the Active-Choice Model drawn from the principles of Optimal Foraging Theory, posits that given a choice, individuals will choose the most cost effective means of producing durable cutting tools in their environment and will strategically select those raw materials. An evaluation of the competing models found that lithic raw material selection was a strategic behavior in the PP record. In MIS6 and MIS5, the selection of quartzite was driven by travel and search cost, while during the MIS4, the joint selection of quartzite and silcrete was facilitated by a mobility strategy that focused on longer or more frequent stays at PP coupled with place provisioning. Further, the result suggests that specific raw materials and technology were relied on to obtain food resources and perform processing tasks suggesting knowledge about raw material properties and suitability for tasks. / Dissertation/Thesis / Doctoral Dissertation Anthropology 2017
4

2000 ans d’occupation préhistorique sur l’Ile Verte : les traditions céramiques, l’organisation de la technologie lithique et les réseaux d’interactions au Sylvicole moyen

Mailhot, Étienne 04 1900 (has links)
No description available.

Page generated in 0.0843 seconds