Spelling suggestions: "subject:"atorage lacks"" "subject:"atorage packs""
1 |
The influence of semi-rigid connections on the behaviour of beam and column systemAbdel-Jaber, Mu'tasime January 2002 (has links)
No description available.
|
2 |
Determining realistic loss estimates for rack storage warehouse fires : a thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering in Fire Engineering, Department of Civil Engineering, University of Canterbury ... Christchurch, New Zealand /Porter, Tim January 1900 (has links)
Thesis (M.E.F.E.)--Iniversity of Canterbury, 2004. / Typescript (photocopy). "October 2004." Includes bibliographical references. Also available via the World Wide Web.
|
3 |
DESIGN AND DEVELOPMENT OF A SEISMIC ISOLATIONSYSTEM FOR COMMERCIAL STORAGE RACKSMichael, Robert Joseph 23 August 2013 (has links)
No description available.
|
4 |
Structural Capacity of Light Gauge Steel Storage Rack UprightsKoen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
|
5 |
Structural Capacity of Light Gauge Steel Storage Rack UprightsKoen, Damien Joseph January 2008 (has links)
Master of Engineering (Research) / This report investigates the down-aisle buckling load capacity of steel storage rack uprights. The effects of discrete torsional restraints provided by the frame bracing in the cross-aisle direction is considered in this report. Since current theoretical methods used to predict the buckling capacity of rack uprights appear to be over-conservative and complex, this research may provide engineers an alternative method of design using detailed finite element analysis. In this study, the results from experimental testing of upright frames with K-bracing are compared to finite element predictions of displacements and maximum axial loads. The finite element analysis is then used to determine the buckling loads on braced and un-braced uprights of various lengths. The upright capacities can then be compared with standard design methods which generally do not accurately take into account the torsional resistance that the cross-aisle frame bracing provides to the upright. The information contained in this report would be beneficial to engineers or manufacturers who are involved in the design of rack uprights or other discretely braced complex light gauge steel members subject to axial loads.
|
Page generated in 0.0857 seconds