• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incidence and spread of insects from bucket elevator leg boots

Tilley, Dennis Ray January 1900 (has links)
Doctor of Philosophy / Department of Grain Science / Bhadriraju Subramanyam / Mark E. Casada / In commercial grain elevators and feed mills, the boot and pit areas contribute to commingling of insects with grain that moves through the elevator leg. A pilot-scale bucket elevator leg with a modified removable boot, or slip-boot, was used to measure the magnitude of commingling as a function of stored-product insect density and boot holding time in tests with wheat and corn. Pilot-scale tests showed that clean grain transferred over infested boots was infested with about 1 insect/kg when transferred immediately after the boot was infested; this increased to 2 insects/kg after incubating the boot for 8 wk. Larger numbers of kernels with internal infestations were picked up by clean grain during transfer compared with externally infesting insects, because the mobility of the latter enabled them to move away from buckets during transfer. Monthly surveys over two years at elevators and feed mills revealed several stored-product insects in grain residues from the boot and pit areas and bulk load-out samples. Insect densities in the boot and pit areas were impacted by seasonal temperatures and facility sanitation practices. Recommended sanitation guidelines for the boot and pit areas include: (1) boot residual grain clean-out every 30 d, (2) removal of grain spillage and floor sweepings from the pit area, and (3) proper disposal of boot and pit residual grain. Facilities following these sanitation guidelines could avoid costly grain discounts, increase income of the business operation and minimize or prevent cross contamination of clean grain by infested grain in the boot and pit areas.
2

Efficacy of a synthetic zeolite against five species of stored-grain insects on concrete and wheat

Yao, Kouame January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Bhadriraju Subramanyam / A synthetic zeolite (Odor-Z-Way, sodium aluminum silicate) used for odor adsorption was tested for its ability to control adults of stored-grain insects on wheat and on concrete petri dishes used to simulate floors of empty bins. Insect species tested included unsexed adults of the lesser grain borer, Rhyzopertha dominica (F.); rice weevil, Sitophilus oryzae (L.); maize weevil, Sitophilus zeamais (Motschuslky); red flour beetle, Tribolium castaneum (Herbst), and sawtoothed grain beetle, Oryzaephilus surinamensis (L.). Two formulations were evaluated under laboratory conditions (28±1⁰C and 65±1% r.h.): coarse zeolite (with 90% of particles having a mean diameter at or below 155 µm) and fine zeolite (with 90% of particles having a mean diameter at or below 47.0 µm). On concrete, arenas in 9-cm diameter Petri dishes were sprinkled with the synthetic zeolite to provide deposits of 0 (control), 5 and 10 g/m[superscript]2. Mortality was assessed at times ranging from 10 minutes to 24 hours followed by 48 hours recovery on wheat. Mortality in adults of the five species increased as the rate of application and the duration of exposure increased. Concrete Petri dishes sprinkled with the fine zeolite yielded percent mortality greater or equal to that observed with the coarse zeolite- sprinkled Petri dishes. Bioassays on wheat were conducted using two dosage rates: 0.1 to 3.0 g/kg for R. dominica and 0.05 to 1.0 g/kg for the other insect species. Mortality was assessed 7 days post- infestation. A concentration of 0.75 g/kg of fine or coarse zeolite achieved 100% mortality in adults of S. zeamais, T. castaneum, and O. surinamensis. All adults of S. oryzae were killed using 0.50 g/kg of coarse or fine zeolite. Adults of R. dominica were the least susceptible: 2.50 g/kg of fine zeolite and 3.0 g/kg of coarse zeolite were required for 100% mortality. Mortality generally increased with the concentration of zeolite applied on wheat. Efficacy was not related to particle size. This is the first study showing the efficacy of a synthetic zeolite against adults of five species of stored-product insects on concrete and wheat. Synthetic zeolites can be a suitable alternative to currently used pesticides for treatment of empty bin floors and stored wheat for insect control.
3

Stored-grain insect management with insecticides: evaluation of empty- bin and grain treatments against insects collected from Kansas farms

Sehgal, Blossom January 1900 (has links)
Master of Science / Department of Grain Science and Industry / Bhadriraju Subramanyam / The insecticides, β-cyfluthrin and chlorpyrifos-methyl plus deltamethrin, are approved in the United States for treating empty bin surfaces. Chlorpyrifos-methyl plus deltamethrin and spinosad insecticides are approved for direct treatment of wheat. The efficacy of commercial formulations of β-cyfluthrin and chlorpyrifos-methyl plus deltamethrin at labeled rates was evaluated against adults of 16 field strains of the red flour beetle, Tribolium castaneum (Herbst); seven strains of sawtoothed grain beetle, Oryzaephilus surinamensis (L.); and two strains of the lesser grain borer, Rhyzopertha dominica (F.). Concrete arenas in plastic Petri dishes (9 cm diameter) were used to simulate the concrete floor of empty bins. The time for ~100% knockdown and mortality of adults of laboratory strains of the three species was first established by exposing them to insecticide-treated concrete surfaces for 1 to 24 h. Adults of field strains of each species were exposed to specific established insecticide-time combinations. Mortality of all species was lower than knockdown, suggesting recovery after seven days when placed on food. Chlorpyrifos-methyl plus deltamethrin did not control all R. dominica and most O. ]surinamensis field strains. β-cyfluthrin was extremely effective against R. dominica but ineffective against T. castaneum and O. surinamensis field strains, even at four times the high labeled rate. Field strains of R. dominica were highly susceptible to spinosad and chlorpyrifos-methyl plus deltamethrin at labeled rates on hard red winter wheat. Strains of T. castaneum and O. surinamensis were susceptible only to the latter insecticide. Dose-response tests with spinosad on the two least susceptible field strains of each species showed the lethal dose for 99% mortality (LD[subscript]99) for T. castaneum and R. dominica field strains were similar to that of the corresponding laboratory strains. Corresponding values for the two O. surinamensis field strains were significantly greater (~6 times) than the laboratory strain. The effective dose for progeny reduction (ED[subscript]99) of only one R. dominica field strain was significantly greater (~2 times) than that of the laboratory strain. The baseline susceptibility data of field strains of three insect species to spinosad will be useful for monitoring resistance development once this product is commercially released as a grain protectant.

Page generated in 0.062 seconds