• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Orientation Invariant Pattern Detection in Vector Fields with Clifford Algebra and Moment Invariants

Bujack, Roxana 14 December 2015 (has links) (PDF)
The goal of this thesis is the development of a fast and robust algorithm that is able to detect patterns in flow fields independent from their orientation and adequately visualize the results for a human user. This thesis is an interdisciplinary work in the field of vector field visualization and the field of pattern recognition. A vector field can be best imagined as an area or a volume containing a lot of arrows. The direction of the arrow describes the direction of a flow or force at the point where it starts and the length its velocity or strength. This builds a bridge to vector field visualization, because drawing these arrows is one of the fundamental techniques to illustrate a vector field. The main challenge of vector field visualization is to decide which of them should be drawn. If you do not draw enough arrows, you may miss the feature you are interested in. If you draw too many arrows, your image will be black all over. We assume that the user is interested in a certain feature of the vector field: a certain pattern. To prevent clutter and occlusion of the interesting parts, we first look for this pattern and then apply a visualization that emphasizes its occurrences. In general, the user wants to find all instances of the interesting pattern, no matter if they are smaller or bigger, weaker or stronger or oriented in some other direction than his reference input pattern. But looking for all these transformed versions would take far too long. That is why, we look for an algorithm that detects the occurrences of the pattern independent from these transformations. In the second part of this thesis, we work with moment invariants. Moments are the projections of a function to a function space basis. In order to compare the functions, it is sufficient to compare their moments. Normalization is the act of transforming a function into a predefined standard position. Moment invariants are characteristic numbers like fingerprints that are constructed from moments and do not change under certain transformations. They can be produced by normalization, because if all the functions are in one standard position, their prior position has no influence on their normalized moments. With this technique, we were able to solve the pattern detection task for 2D and 3D flow fields by mathematically proving the invariance of the moments with respect to translation, rotation, and scaling. In practical applications, this invariance is disturbed by the discretization. We applied our method to several analytic and real world data sets and showed that it works on discrete fields in a robust way.
2

Orientation Invariant Pattern Detection in Vector Fields with Clifford Algebra and Moment Invariants

Bujack, Roxana 19 December 2014 (has links)
The goal of this thesis is the development of a fast and robust algorithm that is able to detect patterns in flow fields independent from their orientation and adequately visualize the results for a human user. This thesis is an interdisciplinary work in the field of vector field visualization and the field of pattern recognition. A vector field can be best imagined as an area or a volume containing a lot of arrows. The direction of the arrow describes the direction of a flow or force at the point where it starts and the length its velocity or strength. This builds a bridge to vector field visualization, because drawing these arrows is one of the fundamental techniques to illustrate a vector field. The main challenge of vector field visualization is to decide which of them should be drawn. If you do not draw enough arrows, you may miss the feature you are interested in. If you draw too many arrows, your image will be black all over. We assume that the user is interested in a certain feature of the vector field: a certain pattern. To prevent clutter and occlusion of the interesting parts, we first look for this pattern and then apply a visualization that emphasizes its occurrences. In general, the user wants to find all instances of the interesting pattern, no matter if they are smaller or bigger, weaker or stronger or oriented in some other direction than his reference input pattern. But looking for all these transformed versions would take far too long. That is why, we look for an algorithm that detects the occurrences of the pattern independent from these transformations. In the second part of this thesis, we work with moment invariants. Moments are the projections of a function to a function space basis. In order to compare the functions, it is sufficient to compare their moments. Normalization is the act of transforming a function into a predefined standard position. Moment invariants are characteristic numbers like fingerprints that are constructed from moments and do not change under certain transformations. They can be produced by normalization, because if all the functions are in one standard position, their prior position has no influence on their normalized moments. With this technique, we were able to solve the pattern detection task for 2D and 3D flow fields by mathematically proving the invariance of the moments with respect to translation, rotation, and scaling. In practical applications, this invariance is disturbed by the discretization. We applied our method to several analytic and real world data sets and showed that it works on discrete fields in a robust way.
3

Orientation Invariant Pattern Detection in Vector Fields with Clifford Algebra and Moment Invariants

Bujack, Roxana 19 December 2014 (has links)
The goal of this thesis is the development of a fast and robust algorithm that is able to detect patterns in flow fields independent from their orientation and adequately visualize the results for a human user. This thesis is an interdisciplinary work in the field of vector field visualization and the field of pattern recognition. A vector field can be best imagined as an area or a volume containing a lot of arrows. The direction of the arrow describes the direction of a flow or force at the point where it starts and the length its velocity or strength. This builds a bridge to vector field visualization, because drawing these arrows is one of the fundamental techniques to illustrate a vector field. The main challenge of vector field visualization is to decide which of them should be drawn. If you do not draw enough arrows, you may miss the feature you are interested in. If you draw too many arrows, your image will be black all over. We assume that the user is interested in a certain feature of the vector field: a certain pattern. To prevent clutter and occlusion of the interesting parts, we first look for this pattern and then apply a visualization that emphasizes its occurrences. In general, the user wants to find all instances of the interesting pattern, no matter if they are smaller or bigger, weaker or stronger or oriented in some other direction than his reference input pattern. But looking for all these transformed versions would take far too long. That is why, we look for an algorithm that detects the occurrences of the pattern independent from these transformations. In the second part of this thesis, we work with moment invariants. Moments are the projections of a function to a function space basis. In order to compare the functions, it is sufficient to compare their moments. Normalization is the act of transforming a function into a predefined standard position. Moment invariants are characteristic numbers like fingerprints that are constructed from moments and do not change under certain transformations. They can be produced by normalization, because if all the functions are in one standard position, their prior position has no influence on their normalized moments. With this technique, we were able to solve the pattern detection task for 2D and 3D flow fields by mathematically proving the invariance of the moments with respect to translation, rotation, and scaling. In practical applications, this invariance is disturbed by the discretization. We applied our method to several analytic and real world data sets and showed that it works on discrete fields in a robust way.
4

Orientation Invariant Pattern Detection in Vector Fields with Clifford Algebra and Moment Invariants

Bujack, Roxana 16 December 2014 (has links)
The goal of this thesis is the development of a fast and robust algorithm that is able to detect patterns in flow fields independent from their orientation and adequately visualize the results for a human user. This thesis is an interdisciplinary work in the field of vector field visualization and the field of pattern recognition. A vector field can be best imagined as an area or a volume containing a lot of arrows. The direction of the arrow describes the direction of a flow or force at the point where it starts and the length its velocity or strength. This builds a bridge to vector field visualization, because drawing these arrows is one of the fundamental techniques to illustrate a vector field. The main challenge of vector field visualization is to decide which of them should be drawn. If you do not draw enough arrows, you may miss the feature you are interested in. If you draw too many arrows, your image will be black all over. We assume that the user is interested in a certain feature of the vector field: a certain pattern. To prevent clutter and occlusion of the interesting parts, we first look for this pattern and then apply a visualization that emphasizes its occurrences. In general, the user wants to find all instances of the interesting pattern, no matter if they are smaller or bigger, weaker or stronger or oriented in some other direction than his reference input pattern. But looking for all these transformed versions would take far too long. That is why, we look for an algorithm that detects the occurrences of the pattern independent from these transformations. In the second part of this thesis, we work with moment invariants. Moments are the projections of a function to a function space basis. In order to compare the functions, it is sufficient to compare their moments. Normalization is the act of transforming a function into a predefined standard position. Moment invariants are characteristic numbers like fingerprints that are constructed from moments and do not change under certain transformations. They can be produced by normalization, because if all the functions are in one standard position, their prior position has no influence on their normalized moments. With this technique, we were able to solve the pattern detection task for 2D and 3D flow fields by mathematically proving the invariance of the moments with respect to translation, rotation, and scaling. In practical applications, this invariance is disturbed by the discretization. We applied our method to several analytic and real world data sets and showed that it works on discrete fields in a robust way.
5

Beyond Janus Geometry: Characterization of Flow Fields around Nonspherical Photocatalytic Microswimmers

Heckel, Sandra, Bilsing, Clemens, Wittmann, Martin, Gemming, Thomas, Büttner, Lars, Czarske, Jürgen, Simmchen, Juliane 16 May 2024 (has links)
Catalytic microswimmers that move by a phoretic mechanism in response to a self-induced chemical gradient are often obtained by the design of spherical janus microparticles, which suffer from multi-step fabrication and low yields. Approaches that circumvent laborious multi-step fabrication include the exploitation of the possibility of nonuniform catalytic activity along the surface of irregular particle shapes, local excitation or intrinsic asymmetry. Unfortunately, the effects on the generation of motion remain poorly understood. In this work, single crystalline BiVO₄ microswimmers are presented that rely on a strict inherent asymmetry of charge-carrier distribution under illumination. The origin of the asymmetrical flow pattern is elucidated because of the high spatial resolution of measured flow fields around pinned BiVO₄ colloids. As a result the flow from oxidative to reductive particle sides is confirmed. Distribution of oxidation and reduction reactions suggests a dominant self-electrophoretic motion mechanism with a source quadrupole as the origin of the induced flows. It is shown that the symmetry of the flow fields is broken by self-shadowing of the particles and synthetic surface defects that impact the photocatalytic activity of the microswimmers. The results demonstrate the complexity of symmetry breaking in nonspherical microswimmers and emphasize the role of self-shadowing for photocatalytic microswimmers. The findings are leading the way toward understanding of propulsion mechanisms of phoretic colloids of various shapes.

Page generated in 0.0583 seconds