Spelling suggestions: "subject:"ctrain rate dependency"" "subject:"detrain rate dependency""
1 |
Développement et validation d'un modèle aux éléments discrets de comportement du béton sous chargement dynamique / Development and validation of a discrete element method for modeling dynamic behaviour of concreteOmar, Ahmad 31 March 2015 (has links)
Ce travail concerne l'analyse de la vulnérabilité des structures de protection et des ouvrages sensibles en béton soumis à des actions dynamiques sévères (impacts, explosions) dues à des risques anthropiques d'origine accidentelle ou non. L'objet est la mise au point d'outils prévisionnels de simulation capables de décrire de manière objective le comportement dynamique du béton. Pour cela, une approche numérique novatrice reposant sur la méthode des Eléments Discrets (MED) est développée. Une première partie de cette thèse concerne la simulation des essais quasi-statiques de compression et traction uniaxiales. Une loi de transfert de moment (LTM) a été introduite pour pallier au problème de fragilité en compression simple. Ensuite, la procédure d'identification des paramètres du modèle modifié a été optimisée pour bien reproduire le comportement macroscopique du béton. Enfin, le modèle a été validé en représentant correctement le comportement quasi-statique de plusieurs types de béton. La deuxième partie du travail traite la simulation des essais de traction dynamique du béton aux barres de Hopkinson. Les résultats ont montré la nécessité de prendre l'effet de vitesse de déformation dû au matériau pour bien reproduire le comportement expérimental. Ensuite, Les paramètres du modèle permettant de reproduire cet effet de vitesse ont été identifiés. Enfin, des essais avec des taux de déformation très élevés ont été simulés et les résultats numériques ont été en accord avec le comportement observé expérimentalement. / This work concerns the analysis of the vulnerability of sensitive concrete structures subjected to severe dynamic actions such as impacts due to natural hazards or human factors. The object is to develop a numerical tool that can describe objectively the dynamic behaviour of concrete. Then, a 3D discrete element method (DEM) was developed and used to perform the analysis. The first part of this thesis focuses on the simulation of quasi-static uniaxial compression and traction tests. A moment transfer law (MTL) was introduced to overcome the problem of brittle compressive behavior. Then, the identification procedure of the modified DEM model has been optimized in order to reproduce very well the macroscopic behaviour of concrete. Finally, the model has been validated by representing properly the real quasi-static behavior of different types of concrete. The second part of the study deals with the simulation of the dynamic Hopkinson traction bar tests of concrete. The results showed that a local rate effect has to be introduced to reproduce the strain rate dependency, which would then be a material-intrinsic effect. Then, the parameters of the model have been identified. Finally, simulations were run at high strain rates and showed consistent results with respect to experimental behaviour.
|
2 |
Développement et validation d'un modèle aux éléments discrets de comportement du béton sous chargement dynamique / Development and validation of a discrete element method for modeling dynamic behaviour of concreteOmar, Ahmad 31 March 2015 (has links)
Ce travail concerne l'analyse de la vulnérabilité des structures de protection et des ouvrages sensibles en béton soumis à des actions dynamiques sévères (impacts, explosions) dues à des risques anthropiques d'origine accidentelle ou non. L'objet est la mise au point d'outils prévisionnels de simulation capables de décrire de manière objective le comportement dynamique du béton. Pour cela, une approche numérique novatrice reposant sur la méthode des Eléments Discrets (MED) est développée. Une première partie de cette thèse concerne la simulation des essais quasi-statiques de compression et traction uniaxiales. Une loi de transfert de moment (LTM) a été introduite pour pallier au problème de fragilité en compression simple. Ensuite, la procédure d'identification des paramètres du modèle modifié a été optimisée pour bien reproduire le comportement macroscopique du béton. Enfin, le modèle a été validé en représentant correctement le comportement quasi-statique de plusieurs types de béton. La deuxième partie du travail traite la simulation des essais de traction dynamique du béton aux barres de Hopkinson. Les résultats ont montré la nécessité de prendre l'effet de vitesse de déformation dû au matériau pour bien reproduire le comportement expérimental. Ensuite, Les paramètres du modèle permettant de reproduire cet effet de vitesse ont été identifiés. Enfin, des essais avec des taux de déformation très élevés ont été simulés et les résultats numériques ont été en accord avec le comportement observé expérimentalement. / This work concerns the analysis of the vulnerability of sensitive concrete structures subjected to severe dynamic actions such as impacts due to natural hazards or human factors. The object is to develop a numerical tool that can describe objectively the dynamic behaviour of concrete. Then, a 3D discrete element method (DEM) was developed and used to perform the analysis. The first part of this thesis focuses on the simulation of quasi-static uniaxial compression and traction tests. A moment transfer law (MTL) was introduced to overcome the problem of brittle compressive behavior. Then, the identification procedure of the modified DEM model has been optimized in order to reproduce very well the macroscopic behaviour of concrete. Finally, the model has been validated by representing properly the real quasi-static behavior of different types of concrete. The second part of the study deals with the simulation of the dynamic Hopkinson traction bar tests of concrete. The results showed that a local rate effect has to be introduced to reproduce the strain rate dependency, which would then be a material-intrinsic effect. Then, the parameters of the model have been identified. Finally, simulations were run at high strain rates and showed consistent results with respect to experimental behaviour.
|
3 |
Material Characterization and Blade Impact SimulationBodare, Gustaf January 2022 (has links)
Blades used on brushcutters and lawn mowers are subjected to a wide variety of working conditions. Besides continuous loads from cutting grass, the blades are also subjected to accidental impacts of branches, stones and structures. Due to exceptionally high rotational velocities, these types of impacts involve blade deformation at high strain rates. This master’s thesis aims to improve understanding and predictability of blade properties for design of future blades. The project is aimed at characterization of the mechanical response of steel used for brushcutter blades and developing a simulation model of a blade impact load case. Thus, the problem was divided into two main parts: firstly, material characterization, and secondly, numerical modeling. The objective of the material characterization part was to determine the rate dependence of the flow stress for two hardened steels. Experimental compression tests were performed at quasi-static strain rates (10-4 - 10-2 s-1) and at high strain rates (102 - 104 s-1) in order to characterize the rate dependence of each material. The objective of the numerical modeling part was to develop simulation models of an impact load case for the purpose of recreating tests performed with an experimental test setup. The simulation models were aimed to include material models for the blade based on the experimental tests performed for the two hardened steels. In preparation for the compression tests, cylindrical specimens were acquired through electrical discharge machining involving material removal from blades intended for brushcutters. Compression tests at high strain rates were performed utilizing a split-Hopkinson pressure bar apparatus which resulted in strain rates in the order of 1000 s-1 and 3000 s-1. Compression tests at quasi-static strain rates were performed with an electro-mechanical loading machine and implementation of two-dimensional digital image correlation for strain measurements. With this method, strain rates in the order of 5 · 10-2 s-1 and 5 · 10-4 s-1 were achieved. The acquired results from the experimental tests included the response of the two materials at four different strain rates in the form of true stress-true strain curves. The results were indicative of small strain rate dependency for each of the two hardened steels with a slight increase in yield stress for increasing strain rates. Both materials exhibited closely similar characteristics. At quasi-static rates, the response of both materials exhibited work-hardening of closely similar characteristics. At high strain rates, the response of both materials exhibited a close to identical decrease in stress for values of strain exceeding 10 %. This behavior was suggested to be a consequence of adiabatic heating. At all four achieved strain rates, the results were indicative of a higher yield stress with higher subsequent stresses for one of the hardened steels in comparison to the other. The impact load case aimed to be simulated involved one swing of a brushcutter against a 25 mm diameter steel rod according to standard SS-EN ISO 11806-1:2011. The steel rod was specified to be impacted horizontally by the blade at an approaching translational velocity of 1 m/s and a blade rotational velocity of 8500 rpm. The multi-physics simulation software LS-DYNA was used to develop simulation models which consisted of two main parts, the blade and the rod and included two different blade geometries. As a result of a study regarding the suitability of different discretization techniques, the decision was made to implement the mesh-free particle method Smoothed Particle Galerkin (SPG) and to perform coupling with the finite element method (FEM). Two material models were developed based on the measured stress-strain response obtained through high strain rate compression testing. Several numerical models of the impact load case were produced, all of which entailed different sets of parameters. These included selection of blade material, failure strain, rod length and blade angle relative to the horizontal plane. Finally, two models were developed which were opposite in terms of assigned element formulation for the blade tip and the rod and otherwise identical. The results of the different models were then compared, namely in terms of resulting material failure of the blade after impact. It was concluded that SPG was the most suitable method of choice for the impact load case aimed to be simulated due to its ability to handle large deformation and the inclusion of the a bond-based failure mechanism. Furthermore, implementation of the SPG method resulted in deformation and failure considered to be of greater agreement to experimental test results compared to FEM.
|
4 |
Traumatic brain injury: modeling and simulation of the brain at large deformationPrabhu, Raj 06 August 2011 (has links)
The brain is a complex organ and its response to the mechanical loads at all strain rates has been nonlinear and inelastic in nature. Split-Hopkinson Pressure Bar (SHPB) high strain rate compressive tests conducted on porcine brain samples showed a strain rate dependent inelastic mechanical behavior. Finite Element (FE) modeling of the SHPB setup in ABAQUS/Explicit, using a specific constitutive model (MSU TP Ver. 1.1) for the brain, showed non-uniform stress state during tissue deformation. Song et al.’s assertion of using annular samples for negating inertial effects was also tested. FE simulation results showed that the use of cylindrical or annular did not mitigate the initial hardening. Further uniaxial stress state was not maintained is either case. Experimental studies on hydration effects of the porcine brain on its mechanical response revealed two different phenomenological trends. The wet brain (~80% water wt. /wt.) showed strain rate dependency along with two unique mechanical behavior patterns at quasi-static and high strain rates. The dry brain’s (~0% water wt. /wt.) response was akin to the response of metals. The dry brain’s response also observed to be strain rate insensitivity in its elastic modulus and yield stress variations. Uncertainty analysis of the wet brain high strain rate data revealed large uncertainty bands for the sample-to-sample random variations. This large uncertainty in the brain material should be taken into in the FE modeling and design stages. FE simulations of blast loads to the human head showed that Pressure played a dominant role in causing blast-related Traumatic Brain Injury (bTBI). Further, the analysis of shock waves exposed the deleterious effect of the 3-Dimensional geometry of the skull in pinning the location of bTBI. The effects of peak negative Pressure at injury sites have been attributed to bTBI pathologies such as Diffuse Axonal Injury (DAI), subdural hemorrhage and cerebral contusion.
|
5 |
Modélisation dynamique avancée des composites à matrice organique (CMO) pour l’étude de la vulnérabilité des structures aéronautiques / Advanced dynamic modelling of Organic Matrix Composites (OMC) to study the vulnerability of aeronautical structuresCastres, Magali 27 September 2018 (has links)
Les matériaux composites à matrice organique sont largement utilisés dans l'industrie des transports et notamment dans le domaine aéronautique. Pour permettre un dimensionnement optimal des structures, il est nécessaire d'étudier le comportement des matériaux CMO sur une large gamme de vitesses et de températures.L'objectif de cette thèse est de proposer un modèle de comportement et de rupture permettant de prédire la réponse des CMO sur une large gamme de vitesses de sollicitation et de températures. Les recherches se sont intéressées dans un premier temps à la caractérisation de la transition entre les régimes de comportement linéaire et non linéaire du matériau unidirectionnel T700GC/M21 (renforts de fibres de carbone, résine époxy), ainsi qu'à la dépendance de cette transition à la vitesse de sollicitation et à la température. Les travaux se sont ensuite focalisés sur l'étude expérimentale du régime de comportement non linéaire endommageable du T700GC/M21. Enfin, au terme de ces deux étapes, une version améliorée du modèle disponible à l'ONERA pour les composites stratifiés (OPFM) a été proposée, version intégrant un critère de transition linéaire/non linéaire de comportement, et une prise en compte de l'influence de la vitesse de sollicitation et de la température sur la réponse du matériau / Nowadays, organic matrix composite materials are widely used in the transportation industry, and particularly in the aeronautical industry. To provide an optimal dimensioning of the structures, it is necessary to study the mechanical behavior of OMC on a large range of strain rates and temperatures. The aim of this PhD thesis is to propose a behavior and a rupture model to predict the mechanical response of OMC for a large range of strain rates and temperatures. The research was initially focused on the characterization of the transition between the linear and nonlinear behavior of the material T700GC/M21, a carbon / epoxy unidirectional laminate as well as the strain rate and temperature dependencies of this transition. The work was then focused on the experimental study of the nonlinear damaged behavior of the T700GC/M21. Finally, completing these first two steps, an updated version of the behavior model available at ONERA (OPFM) was proposed which includes the transition between linear and nonlinear behavior and the influence of strain rate and temperature on the mechanical response of the material.
|
6 |
Electromagnetic Pulse Welding Process and Material Parameter Identification for High Speed ProcessesScheffler, Christian 14 July 2021 (has links)
Electromagnetic welding is an innovative, high-speed technology to manufacture mixed material joints. In this dissertation, an experimental-numerical method is presented to identify robust process windows of aluminum-copper and aluminum-steel compounds. The microstructural characteristics of these joints were investigated in detail. Moreover, an evaluation of the joint quality is presented and different numerical models were introduced for the simulation of macroscopic and microscopic effects. To improve the accuracy of the simulations, the strain rate sensitivity of the materials must be considered. For this purpose a high-speed setup for the identification of relevant viscoplastic material parameters, comprising an inverse evaluation strategy, was developed.
|
Page generated in 0.0955 seconds