Spelling suggestions: "subject:"estratigraphy"" "subject:"bistratigraphy""
541 |
Provenance study of late Eocene arkosic sandstones in southwest and central WashingtonByrnes, Mark Edward 01 January 1985 (has links)
The purpose of this study is to compare the sandstone composition and trace element geochemistry between samples representing the Summit Creek sandstone, Naches, Chumstick, and Carbonado Formations in order to determine if these sediments were all derived from the same provenance, and to determine the composition of the source rocks in hopes to identify the present day location of the source areas.
|
542 |
Strontium, Lead, and Oxygen Isotopic Signatures of Mid-Miocene Silicic Volcanism in Eastern OregonHess, Emily Nancy 09 December 2014 (has links)
Widespread, mid-Miocene rhyolite volcanism of eastern Oregon that are coeval or slightly postdate flood basalts of the Columbia River Basalt Province allows for mapping crustal domains using radiogenic and stable isotopes. Rhyolites are thought to be derived in large part by partial melting of the crust and thus yield direct information on the composition of the crust. Silicic volcanism is expressed in the form of numerous domes and tuffs exposed over a wide area (~300 km in N-S dimension and ~200 km in E-W dimension) west of the presumed craton boundary, which runs parallel but mostly east of the Oregon-Idaho state border as delineated by geophysical characteristics and isotopic transitions, including the 87Sr/86Sri = 0.7060 line (MSL) and 87Sr/86Sri = 0.7040 (CSL).
87Sr/86Sri of twenty-seven silicic units are variable and some are high. Sr isotopic ratios are inconsistent with the location of the traditional MSL and CSL boundaries. A primary control on the 87Sr/86Sri isotope variations may reflect changes in the crustal make-up of Paleozoic accreted terranes of a particular area rather than arising from a westward-dipping decollement that moved cratonic lithosphere below accreted terranes in eastern Oregon. A secondary control on observed isotopic ratios may be related to the amount and composition of basalt involved in the generation of rhyolites. This could lead to higher or lower 87Sr/86Sri relative to the surrounding crust because de facto coeval mafic magmas of the Columbia River Basalt Group have a wide range of Sr isotopic signatures.
While Pb isotope data is incomplete for all samples of this study, the available data indicate a significant range in Pb isotopes. Yet, data of individual regions tend to plot close to one another relative to the entire data distribution. Comparison of samples from this study in a more regional view indicates the samples generally fall within the previously defined lead isotope boundaries of the main-phase Columbia River Basalt Group lavas.
[lowercase delta]¹⁸O values range from below 2 parts per thousand to above 9 parts per thousand. In addition, there is a crude trend of rhyolites having lower [lowercase delta]¹⁸O and more radiogenic ⁸⁷Sr/⁸⁶Sr[subscript i] ratios. The lowest oxygen ratios (< 2 parts per thousand) are found in rhyolites ~80 km west of the cratonic margin, potentially reflecting remelting or assimilation of hydrothermally altered crust. Low [lowercase delta]¹⁸O of selected rhyolite flows cannot be explained by remelting of Cretaceous plutons of the Idaho Batholith and appear irreconcilable with remelting of altered silicic rocks at centers of multiple, confocal caldera cycles- both processes that have been proposed to explain low [lowercase delta]¹⁸O of rhyolites of the Snake River Plain-Yellowstone area.
|
543 |
Tephrostratigraphy of the middle Eocene Chumstick Formation, Cascade Range, Douglas County, WashingtonMcClincy, Matthew John 01 January 1986 (has links)
This study outlines the ash (tuff) bed stratigraphy (tephrostratigraphy) in the middle Eocene Chumstick Formation of central Washington. The tuff beds provide local marker beds enabling interpretation of the stratigraphy and structure of the formation. The chemical signature of these units provides the basis on which the units can be traced over broad areas in the basin of deposition. Correlations of tuff beds were obtained over distances of 41 km.
|
544 |
The stratigraphy and structure of the Columbia River basalt group in the Bull Run watershed, Multnomah and Clackamas Counties, OregonVogt, Beverly Frobenius 01 January 1981 (has links)
Approximately 150 meters (500 feet) of Grande Ronde Basalt and 140 meters (450 feet) of Wanapum Basalt of the Columbia River Basalt Group are exposed in the Bull Run Watershed. In Bull Run, the Grande Ronde Basalt is divided into three mappable units: "low Mg" R2 (at least one flow), "low Mg" N2 (approximately four flows), and "high Mg" N2 (two to three flows}. The Wanapum Basalt is represented by two members: Frenchman Springs Member (six flows) and Priest Rapids Member (one flow). These units are identified by instrumental neutron activation analysis, paleomagnetism based on measurements with a fluxgate magnetometer, petrography, lithology, jointing, and stratigraphic position.
|
545 |
Holocene geologic history of the Clatsop Plains foredune ridge complexRankin, David Karl 01 January 1983 (has links)
This research formulated a recent geologic history of the Clatsop Plains dating from 3500 years BP to present. Research consisted of geomorphic mapping, near-surface stratigraphic evaluation, carbon dating and subsurface interpretation of available data.
|
546 |
Did early land plants produce a step-change in atmospheric oxygen centered on the Late Ordovician Sandbian Age ~458 Ma?Adiatma, Yoseph Datu 28 May 2019 (has links)
No description available.
|
547 |
The Kaskaskia-Absaroka Boundary in the Subsurface of Athens County, OhioStobart, Ryan Patrick January 2019 (has links)
No description available.
|
548 |
Depositional Controls Of A Guelph Formation Pinnacle Reef Debris Apron And Their Effect On Reservoir Quality: A Case Study From Northern MichiganCotter, Zachary M.K. 05 May 2020 (has links)
No description available.
|
549 |
Statistical and wavelet analysis of density and magnetic susceptibility data from the Bushveld Complex, South AfricaSepato, Obone January 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science.
Johannesburg, 2015 / The Bushveld Complex (BC) is the largest known layered intrusion. This suite of rock crop out in northern South Africa to form the Western, Eastern and Northern Limbs. Most research carried out focuses on the mineralized horizons in the Rustenburg Layered Suite (RLS) of the BC. This study presents a large database of wireline geophysical logs across a substantive part of the stratigraphy of the RLS. These consist of density and magnetic susceptibility datasets sampled at 1 cm. The major lithologies of the RLS intersected in the boreholes presented are gabbro, gabbronorite, norite and anorthosite whose density histograms reveal that they are predominantly normally distributed, with density averages of 2.86-2.91 g/cm3. The lithologies consist of mainly two minerals, pyroxene and plagioclase. In general, the average density increases with an increase in pyroxene. The distribution of the magnetic susceptibility for these lithologies has a large variation from SI to 13.2 SI, which is typical of layered intrusions. Susceptibility distributions are also multi-modal, asymmetric and not normally distributed, which makes the average magnetic susceptibilities less representative of the lithologies.
Cross-correlation plots between density and magnetic susceptibility for several boreholes show that the above-mentioned lithologies form clusters (circular to elliptical), which typically overlap. This has been further investigated using k-means classification, to automatically detect these clusters in the cross-correlation plots and to compare these with those created by lithologies. The comparison shows some degree of correlation, implying that physical properties can be used to identify lithologies. This is particularly true for the Eastern Limb. However the classification has not been effective in all of the boreholes and often becomes complicated and an inaccurate representation of lithology log. This occurs in boreholes in which there is an overlap in the physical properties of the abovementioned lithologies.
Analysis on the density and magnetic susceptibility data has also been carried out using wavelet analysis at individual locations across the BC. This has revealed multi-scale cyclicity in all of the boreholes studied, which is attributed to subtle layering created by variations in modal proportions between plagioclase and pyroxene. In addition to this, since layering is generally ubiquitous across layered intrusions, this cyclicity can be assumed to be present across the entire BC. This technique may become increasingly important should the cyclicity in physical property data correlate with reversals in fractionation trends since this may suggest zones of magma addition, whose thickness or
III
volumes can be quantified using wavelet analysis. This could be an important contribution since the current perspective on magma addition in the RLS is that four major additions have formed this 8 km thick suite of rocks, as opposed to smaller periodic influxes of magma.
Wavelet-based semblance analysis has been used to compare the wavelengths at which the cyclicity occurs across boreholes. A comparison of wavelengths of this cyclicity shows that boreholes in the northern Western Limb show positive correlation in the density data at wavelengths >160 m and 20-60 m, while those further south show correlations at wavelengths of 120-200 m and 60-80 m. Boreholes of the Eastern Limb show positive correlation in the density and magnetic susceptibility data at wavelengths of 10-20 m, 20-30 m and 5m. These positive correlations across boreholes in density and magnetic susceptibility respectively, may imply that cyclicity may be produced by a chamber-wide process for several kilometres of the BC.
|
550 |
Stratigraphy and sedimentary environments of the Late Permian Dicynodon Assemblage Zone (Karoo Supergroup, South Africa) and implications for basin developmentViglietti, Pia Alexa January 2016 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy. June 2016. / The Dicynodon Assemblage Zone (DiAZ) spans the last three million years of the Late Permian (Lopingian) Beaufort Group (Karoo Supergroup). Fluvio-lacustrine conditions covered the entire Karoo Basin during this period, preserved as the rocks of the Balfour, Teekloof, and Normandien formations. However widely separated exposures and few dateable horizons make correlating between lithostratigraphic subdivisions difficult. Here a revised litho- and biostratigraphic framework is provided for the Upper Permian DiAZ. The Balfour Formation’s Barberskrans Member (BM) is renamed due to identifying the Oudeberg Member and not the BM at the current type locality (Barberskrans Cliffs). It is renamed Ripplemead member (RM) after Ripplemead farm 20 km north of Nieu Bethesda where it outcrops. The Teekloof Formation’s Javanerskop member and Musgrave Grit unit in the central Free State Province are regarded mappable units whereas the Boomplaas sandstone (BS) may represent a unit that is a lateral equivalent to the Oudeberg Member. Palaeontological and detrital zircon data suggest none of these locally persistent sandstone horizons correlate temporally.
Three index fossils that currently define the DiAZ (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) appear below its lower boundary and disappear below the Permo-Triassic Boundary (PTB), coincidentally with the appearance of Lystrosaurus maccaigi. The base of the DiAZ is redefined, with the revived Daptocephalus leoniceps and T. microps re-established as the index fossil for the newly proposed Daptocephalus Assemblage Zone (DaAZ), and is subdivided into two subzones. Da. leoniceps and T. microps’ appearance define the lower and L. maccaigi defines the base of the upper subzone. The same patterns of disappearance are observed at the same stratigraphic interval throughout the basin, despite the thinning of strata northward. Additionally wetter floodplain conditions prevailed in the Lower DaAZ than in the Upper DaAZ which likely reflects climatic changes associated with the Permo-Triassic mass extinction (PTME).
Palaeocurrent and detrital zircon data demonstrate a southerly source area, and recycled orogen petrography indicates the Cape Supergroup is the source of Upper Permian strata. Dominant late Permian zircon population supports the foreland nature of the Karoo Basin. Orogenic loading/unloading events are identified by two fining-upward cycles, separated by a diachronous third-order subaerial unconformity at the base of the RM and Javanerskop members. Sediment progradation northwards was out-of-phase with the south and wedge-shaped. Distributive fluvial systems depositing sediment within a retroarc foreland basin best explains these observations. Lithostratigraphic beds and members are recommended for use as local marker horizons only in conjunction with other proxies, such as index fossils or radiometric dates in future studies. / LG2017
|
Page generated in 0.0781 seconds