• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 9
  • 7
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 96
  • 26
  • 24
  • 22
  • 15
  • 15
  • 14
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modeling of Solar Radiation Management : A Comparison of Simulations using Reduced Solar Constant and Stratospheric Aerosols

Sirisha, K January 2014 (has links) (PDF)
The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this thesis, a global climate model is used to test if the climate response to SRM by stratospheric aerosols and uniform solar constant reduction are similar. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by about 15- 20% and direct radiation decreases by about 8% in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~ -1.5%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 6 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 7% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 1%) and NPP (~ 0.7%). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.
32

Supercooling and Freezing of HNO3/H2O Aerosols

Dickens, Dustin January 2000 (has links)
The freezing kinetics of binary nitric acid/water aerosols is of fundamental importance to the modelling of polar stratospheric clouds and the role they in ozone depletion over the Arctic/Antarctic regions. Cirrus clouds are also often composed of nitric acid solutions, hence an understanding of freezing process in these aerosols also aids in modelling the earth's radiation budget and global warming. This thesis explores the kinetic phase diagram of nitric acid/water aerosols with sizes ranging between 0. 2 and 1. 5 mm in radius and concentrations ranging between pure water and 0. 45 mole fraction HNO3. Although the kinetic phase diagram has now been studied between 0. 46 mole fraction HNO3 and pure water, more data is needed in the region between 0. 18 and 0. 25 mole fraction HNO3 to confirm the results reported. The project described in this thesis are a continuation of a project begun by Allan Bertram. The measurements involving aerosols with compositions greater than 0. 25 mole fraction HNO3 were carried out as part of Allan Bertram's Ph. D. thesis (see ref. 20) These data were later examined using a more comprehensive data analysis method (as presented in this thesis) in an effort to obtain a more complete understanding of this system.
33

Optical design for the large balloon reflector

Cortes-Medellin, German, O'Dougherty, Stefan, Walker, Christopher, Goldsmith, Paul F., Groppi, Chris, Smith, Steve, Bernasconi, Pietro 27 July 2016 (has links)
We present the details of the optical design, corrector system, mechanical layout, tolerances, pointing requirements, and overall performance of the sub-millimeter wavelength Large Balloon Reflector telescope (LBR).
34

The Role of Stratosphere-Troposphere Planetary Wave Coupling in Driving Variability of the North Atlantic Circulation

Dunn-Sigouin, Etienne January 2018 (has links)
The wintertime North-Atlantic exhibits enhanced circulation variability relative to other areas of the globe and is a key determinant of weather and climate in the highly populated regions of Europe and Eastern North America. Previous work has linked extreme stratospheric polar vortex and planetary wave heat flux events with variability of the North-Atlantic circulation. To elucidate the role of the stratosphere in driving variability of the North-Atlantic circulation, the goal of this thesis is to clarify the relationship between extreme planetary wave heat flux and vortex events and understand the dynamical mechanisms driving extreme stratospheric planetary wave heat flux events using an idealized model. The relationship between extreme stratospheric planetary wave heat flux and polar vortex events is clarified by comparing and contrasting their composite lifecycles using reanalysis data. Extreme negative heat flux events, defined as those less than the 5th percentile of the wintertime wave-1 distribution, involve stratospheric EP-flux divergence producing an acceleration of the vortex whereas extreme positive heat flux events, defined as those greater than the 95th percentile, involve stratospheric EP-flux convergence producing a deceleration of the vortex. Similar but smaller magnitude heat flux (22th and 78th percentile) events contribute to the development of longer-timescale vortex events. Negative heat flux events precede strong vortex events, showing that strong vortex events are true dynamical events involving wave-mean flow interaction. Conversely, positive heat flux events precede weak vortex events. The tropospheric jet shifts in the North-Atlantic that occur almost simultaneously with extreme stratospheric heat flux events are shown to be comparable if not larger than those that follow extreme vortex events for several weeks. Next, a dry-dynamical core model is configured to capture the lifecycle of extreme positive and negative heat flux events seen in reanalysis. The events are not captured using the standard model setup with idealized wave-1 topography. A modified control simulation captures the key ingredients of the events: 1) the extremes of the stratospheric eddy heat flux distribution, 2) the cross-spectral correlation and phase between the stratosphere and troposphere, 3) the evolution of the eddy heat flux and EP-flux divergence, 4) the stratospheric evolution of the zonal-mean flow, including the NAM, NAM time-tendency, potential temperature time-tendency and stratospheric wave geometry, and 5) the tropospheric evolution, including the high-latitude wave-1 geopotential height pattern and mid-latitude jet shift. Comparison between the model and reanalysis reveals that higher-order planetary wavenumbers play a role prior to the events. Finally, the dry-dynamical core model is used to examine the large-scale dynamical mechanisms driving extreme stratospheric negative heat flux events and their coupling with the tropospheric circulation. An ensemble spectral nudging methodology is used to isolate the role of: 1) the tropospheric wave-1 precursor, 2) the stratospheric zonal-mean flow and 3) the higher-order wavenumbers. The events are partially reproduced when nudging the wave-1 precursor and the zonal-mean flow whereas they are not reproduced when nudging either separately. In contrast, nudging the wave-1 precursor and the higher-order waves reproduces the events, including the evolution of the zonal-mean flow. Mechanism denial experiments show that the higher-order planetary wavenumbers drive the events by modifying the zonal-mean flow and through wave-wave interaction. Nudging all tropospheric wave precursors confirms they are the source of the stratospheric waves. Nudging all stratospheric waves reproduces the coupling with the tropospheric circulation. Taken together, the experiments show that extreme stratospheric negative heat flux events are consistent with downward wave coupling from the stratosphere to the troposphere.
35

Stratospheric Polar Vortex Variability in the Northern Hemisphere: the Effects of Climate Change on Polar Vortex Trends and Future Projections

Rogers, John Earl 20 March 2019 (has links)
Regions that have experienced recent successive cold winters such as the Northeast of North America and Siberia have endured critical social and economic impacts from anomalous low temperatures in recent years, despite warming global temperatures. It is well known that the Tropospheric Polar Vortex (TPV), or jet stream, is a primary influence on many mid-latitude winter weather patterns. However, the strong circumpolar westerlies that maximize at around 60° latitude just above the tropopause, known as the Stratospheric Polar Vortex (SPV), can affect tropospheric circulation and thus winter weather in the Northern Hemisphere. Strong upward propagating waves can affect the geographic extent and strength of the SPV resulting in a weakened polar vortex state, which can in turn bring persistent weather events to the mid-latitudes. Here, an index of SPV spatiotemporal variability is presented using observation based analysis of zonal wind and geopotential height to show changes in SPV behavior at a seasonal scale from 1950-2018. Utilizing the CMIP5 suite of global climate models, historical and projected simulations of the SPV's climatological extent and strength are analyzed from 1915 to the end of this century, taking into account models with enhanced stratospheric representation. Simulated results are largely consistent with trends in the observational data, which suggest continued increases in average SPV size throughout this century. If future SPV disturbances increase in frequency, there could be negative impacts in ecosystem and agricultural health, infrastructure damage, and to human safety. A more advanced understanding of SPV trends and anomalous events could improve forecasts of cold air outbreaks (CAOs) and severe or persistent winter weather.
36

Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

Lindenmaier, Rodica 31 August 2012 (has links)
The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. iii Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally small and in good agreement with previous ground-based FTIR/ACE-FTS comparisons. No clear bias was seen from year-to-year, and, in all cases, the difference between the measurements was within one standard deviation. The mean biases between the ACE-FTS and 125HR partial columns for 2007-2010 were -5.61 to 1.11%, -0.23 to 4.86%, -15.33 to -2.86%, -4.77 to 1.09%, and -0.34 to 5.23% for O3, HCl, ClONO2, HNO3, and HF, respectively. The 125HR measurements and three atmospheric models (CMAM-DAS, GEM-BACH, and SLIMCAT) were used to derive an NOy partial column data product for Eureka. This data product includes the five primary species NO, NO2, HNO3, N2O5, and ClONO2 and was used to study the seasonal and interannual variability of NOy from 2007 to 2010. The NOy 15-40 km partial column was found to be approximately constant through the sunlit part of the year, with greater variability during the spring. The mean partial column averaged for the spring period was (2.5±0.2)x1016 molec cm-2, while for the summer, it was (2.3±0.1)x1016 molec cm-2. The springtime evolution of NOy and its constituent nitrogen species, was also examined for all four years. The variability of the 5-NOy partial column was seen to be dominated by that of HNO3. iv The evolution of the individual nitrogen species was found to be consistent with the current understanding of the chemical and dynamical processes that occur in the polar stratosphere. Unusually low ozone columns were measured at Eureka from mid-February to late March 2011 and compared to the previous 14 years of measurements by the 125HR and its predecessor, Environment Canada’s Bomem DA8. The normalized O3/HF, HCl/HF, and HNO3/HF ratios, for which the effects of dynamics have been reduced, also showed record minima over this period. The SLIMCAT chemical transport model was used to quantify chemical ozone loss using the passive subtraction method. Chemical ozone depletion inside the vortex above Eureka was estimated to be 35%, which is the largest observed there in the past 15 years.
37

Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

Lindenmaier, Rodica 31 August 2012 (has links)
The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. iii Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally small and in good agreement with previous ground-based FTIR/ACE-FTS comparisons. No clear bias was seen from year-to-year, and, in all cases, the difference between the measurements was within one standard deviation. The mean biases between the ACE-FTS and 125HR partial columns for 2007-2010 were -5.61 to 1.11%, -0.23 to 4.86%, -15.33 to -2.86%, -4.77 to 1.09%, and -0.34 to 5.23% for O3, HCl, ClONO2, HNO3, and HF, respectively. The 125HR measurements and three atmospheric models (CMAM-DAS, GEM-BACH, and SLIMCAT) were used to derive an NOy partial column data product for Eureka. This data product includes the five primary species NO, NO2, HNO3, N2O5, and ClONO2 and was used to study the seasonal and interannual variability of NOy from 2007 to 2010. The NOy 15-40 km partial column was found to be approximately constant through the sunlit part of the year, with greater variability during the spring. The mean partial column averaged for the spring period was (2.5±0.2)x1016 molec cm-2, while for the summer, it was (2.3±0.1)x1016 molec cm-2. The springtime evolution of NOy and its constituent nitrogen species, was also examined for all four years. The variability of the 5-NOy partial column was seen to be dominated by that of HNO3. iv The evolution of the individual nitrogen species was found to be consistent with the current understanding of the chemical and dynamical processes that occur in the polar stratosphere. Unusually low ozone columns were measured at Eureka from mid-February to late March 2011 and compared to the previous 14 years of measurements by the 125HR and its predecessor, Environment Canada’s Bomem DA8. The normalized O3/HF, HCl/HF, and HNO3/HF ratios, for which the effects of dynamics have been reduced, also showed record minima over this period. The SLIMCAT chemical transport model was used to quantify chemical ozone loss using the passive subtraction method. Chemical ozone depletion inside the vortex above Eureka was estimated to be 35%, which is the largest observed there in the past 15 years.
38

Supercooling and Freezing of HNO3/H2O Aerosols

Dickens, Dustin January 2000 (has links)
The freezing kinetics of binary nitric acid/water aerosols is of fundamental importance to the modelling of polar stratospheric clouds and the role they in ozone depletion over the Arctic/Antarctic regions. Cirrus clouds are also often composed of nitric acid solutions, hence an understanding of freezing process in these aerosols also aids in modelling the earth's radiation budget and global warming. This thesis explores the kinetic phase diagram of nitric acid/water aerosols with sizes ranging between 0. 2 and 1. 5 mm in radius and concentrations ranging between pure water and 0. 45 mole fraction HNO3. Although the kinetic phase diagram has now been studied between 0. 46 mole fraction HNO3 and pure water, more data is needed in the region between 0. 18 and 0. 25 mole fraction HNO3 to confirm the results reported. The project described in this thesis are a continuation of a project begun by Allan Bertram. The measurements involving aerosols with compositions greater than 0. 25 mole fraction HNO3 were carried out as part of Allan Bertram's Ph. D. thesis (see ref. 20) These data were later examined using a more comprehensive data analysis method (as presented in this thesis) in an effort to obtain a more complete understanding of this system.
39

Seasonal and Regional Variability of Stratospheric Dehydration

Christenberry, Aaron Joseph 2012 May 1900 (has links)
We analyze output from a domain-filling forward trajectory model in order to better understand the annual cycle of water vapor entering the stratosphere. To do this, we determine the minimum water vapor saturation mixing ratio along each trajectory (the final dehydration point or FDP) and assume that the parcel carries that much water vapor into the stratosphere. In the annual average, the tropical Western Pacific, equatorial Africa and South America, and Southeast Asia are found to be the locations of the most frequent FDPs. Looking at individual seasons, we find that FDPs in the tropical western Pacific tend to occur in the summer hemisphere, with FDPs over South America and Africa occurring predominantly during the boreal winter. During boreal summer, a dehydration maximum occurs in the Asian monsoon region. In the annual average, FDP maxima occur at 99 and 84 hPa. Looking at individual seasons, we find that FDPs occur at higher altitudes (centered at 84 hPa) during boreal winter and at lower altitudes (99 hPa) during boreal summer. The annual cycle in FDP altitude combines with the annual cycle in tropical tropopause layer temperatures to generate the observed annual variations in water vapor entering the stratosphere.
40

Study on 2002 sudden stratospheric warming, mesopher-lower thermospheric wind structure and dynamics and middle atmospheric structure, based on superDARN HF RADAR, LIDAR, Riometer, satellites and models.

Mbatha, Nkanyiso Bongumusa. January 2012 (has links)
In this thesis, the dynamics and coupling in the middle atmosphere over the Southern Hemisphere are investigated using SuperDARN high frequency (HF) radar wind data, satellites, light detection and ranging (LIDAR), the South African National Antarctic Expedition (SANAE) imaging riometer and models. In particular, the study focuses on the unprecedented 2002 major stratospheric warming and its role in coupling the middle atmosphere. The dynamics of the middle atmosphere is investigated in terms of mean wind, temperature, gravity waves and planetary wave activity. Studying the middle atmospheric thermal structure over Southern Africa is an important activity to improve the understanding of atmospheric dynamics of this region. Observation of a middle atmosphere thermal structure over Durban (29.9 S, 31.0 E, South Africa) using LIDAR data collected from April 1999 to July 2004 (277 nights), including closest overpasses of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) and Halogen Occultation Experiments (HALOE) satellites, and the COSPAR International Reference Atmosphere (CIRA-86) are presented in this thesis. The observations from the LIDAR instrument, satellites and CIRA-86 exhibit the presence of annual oscillation in the stratosphere, whereas in the mesosphere the semi-annual oscillation seems to dominate the annual oscillation at some levels. The stratopause is observed in the height range of 40-55 km for all the instruments, with the stratopause temperatures being 260- 270 K for the LIDAR, 250-260 K for the SABER, and 250-270 K for the HALOE. Data from the LIDAR, satellites and CIRA-86 model indicate almost the same thermal structure of the middle atmosphere over Durban. This indicates a good agreement between LIDAR, satellites and the CIRA-86 model. Mean wind and planetary waves are investigated on a climatological scale in this study. Mean wind observations from the SANAE SuperDARN HF radar are compared with observations from Halley SuperDARN HF radar. There is a good agreement between the observations from the two stations both in the zonal and meridional wind components. Zonal wind is observed to be consistently larger than the meridional wind. The zonal wind is also consistently more eastward at both stations with maxima occurring during the solstice months. High latitude summer zonal mean ow at 94 km is observed to be weaker and more variable compared to the eastward winter mean circulation owing to tropospherically forced planetary waves propagating through the middle atmosphere. The zonal mean wind shows greater seasonal variability than does the meridional mean wind. This seasonal behaviour is reasonably well understood in terms of the upward propagating planetary waves and gravity waves interacting with the mean ow. The Coriolis force also plays an important role in the case of meridional wind component. The climatology of planetary waves both in the zonal and meridional wind components indicates an ampli cation of planetary waves of shorter wavenumbers (s = 3) in the winter months. During summer, long period oscillations (e.g. >10 days) which are dominant in winter disappear, and oscillations with shorter period (e.g. <10 days) become dominant. vi There is a strong planetary wave coupling between the stratosphere and mesosphere-lower thermospheric (MLT) during the year 2002 winter season, whilst the coupling is observed to be relatively weak during the other years. The strong planetary wave coupling in 2002 is understandable because during this year the middle atmosphere winter months were characterised by strong planetary wave activity which led to the rst ever detection of the SSW in the Southern Hemisphere. In the year 2002 winter period the mean circulation in the stratosphere is characterized by a series of planetary wave events that weakened the polar vortex and triggered the sudden stratospheric warming in late September. In particular, in the stratosphere there is a presence of a quasi 10-day eastward propagating planetary wave of wavenumber s=1, while in the MLT a quasi 14-day eastward propagating planetary wave of wavenumber s=1 is observed to be dominant. The Eliassen Palm ux (E-P) ux shows that strong planetary wave activity observed in the middle atmosphere originates from the troposphere. Zonal winds at the MLT show reversal approximately 7 days before the reversal at stratosphere, indicating a downwards propagation of circulation disturbance in the middle atmosphere. Eastward zonal winds dominate the winter MLT, but during the 2002 winter there are many periods of westward winds observed compared to the other years. The SABER vertical temperature pro les indicate cooling of the MLT region during the SSW occurrence. Gravity wave horizontal phase velocities and horizontal wavelengths as seen by the SANAE imaging riometer are observed to reduce dramatically over SANAE during the occurrence of the stratospheric warming. The disturbance of the middle atmosphere during the Southern Hemisphere stratospheric warming in year 2002 winter preconditioned the region for gravity waves to propagate upward to the MLT. The potential energy of these gravity waves is observed to increase with height up until they reach the lower thermosphere. At the MLT they lose their energy, thus depositing their momentum, leading to the MLT cooling and mean wind reversal. Keywords: SSW, Planetary waves, Gravity waves, Stratosphere, MLT, SuperDARN radar, Mean wind, Temperature, Middle atmosphere, SANAE. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2012.

Page generated in 0.0727 seconds