• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Joint probability analysis of precipitation and streamflow extremes

Unknown Date (has links)
This thesis focuses on evaluation of joint occurrence of extreme precipitation and streamflow events at several hydrologic structures in South Florida. An analysis of twelve years storm events and their corresponding peak streamflow events during wet and dry season including annual peaks considering two seasons was performed first. Dependence analysis using time series data of precipitation and streamflow was carried out next. The analysis included use of storm events with different temporal lags from the time of occurrence of peak streamflow events. Bi-variate joint probability was found to be appropriate to analyze the joint occurrence of events. Evaluation of joint exceedence probabilities under two phases of Atlantic multidecadal oscillation (AMO) influencing south Florida was also evaluated. All methodologies are evaluated for application using observations at several structures in the case study region to provide advances and valuable insights on joint extremes of precipitation and streamflows. / by Chia-hung Lin. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
2

The impacts of future urban growth on streamflow in the Mgeni catchment.

Mauck, Benjamin Alan. January 2012 (has links)
Natural vegetation has been converted to land uses, such as agriculture, commercial forestry and urban use, to meet increasing human demands for food, fuel and shelter. These land use changes modify the surface conditions of an area, resulting in changes in hydrological responses. Urban land use, in particular, has a significant impact on catchment hydrology as a result of the increased impervious areas such as concrete, tar and roofs. To assess the future hydrological impacts of urban land use, the scale and location of future urban areas must be considered. The objective of this study was to assess the hydrological responses to future urban growth in the Mgeni catchment, South Africa. An urban growth model was used to generate scenarios of plausible future urban growth and these scenarios were modelled using a hydrological model to determine the hydrological responses to urban growth. The plausible future urban growth in the Mgeni catchment was modelled using the SLEUTH Urban Growth model (SLEUTH). The SLEUTH acronym stands for the input layers required for the model viz. Slope, Land use, Excluded areas, Urban Extent, Transport routes and Hillshade. SLEUTH is able to provide the scale and location of future urban growth required to assess the hydrological impacts of future urban growth. The data requirements and modelling procedure for SLEUTH is relatively simply and therefore it is well suited to a South African context. SLEUTH was calibrated and applied to the Mgeni catchment to project future urban land use. When assessing the 95-100% probability class, the results revealed that the Henley, Pietermaritzburg and Durban areas would experience the highest urban growth in the Mgeni catchment by the year 2050. The outputs of the SLEUTH Model for the Mgeni catchment showed a number of similarities to another application of SLEUTH in Cape Town. These similarities indicate the SLEUTH performs in a similar way for the two South African cities. Therefore, it was concluded that the SLEUTH Model is suitable to account for urban growth in the Mgeni catchment, as required for use in hydrological impact studies. The hydrological responses to urban growth in the Mgeni catchment were assessed using the ACRU model. The scenarios of plausible future urban growth generated by SLEUTH were overlaid with current land cover layers to generate maps of plausible future urban land use. The results showed extensive urban growth of >95% probability occurring in the Midmar, Albert Falls, Henley, Pietermaritzburg, Table Mountain, Inanda and Durban Water Management Areas (WMAs) by 2050. Increases in mean annual streamflows were observed in many of these areas; however the Henley, Pietermaritzburg and Table Mountain WMAs were shown to have greater increases in mean annual streamflow than the other areas that showed similar increases in urban growth, thus indicating that these WMAs could be particularly responsive to urban growth in the future. Furthermore, the results showed that the type of urban land use is important in determining the hydrological responses of urban land use, as the imperviousness differs between the different urban land uses. Streamflow responses were shown to be influenced by the scale and location of urban growth in the Mgeni catchment and specific areas, such as the WMAs along the Msunduzi River, were identified as potentially responsive to urban growth. Summer streamflows were indicated as being more responsive to urban land use changes than winter streamflows and increases in streamflows due to urban growth start to over-ride the impacts of other land uses which have substantial impacts on hydrological responses such as commercial forestry, and commercial sugarcane by 2050, whereas in other areas increases were mitigated by the presence of major dams. Lastly, it was shown that the type of urban land use, such as built up urban areas when compared to informal urban areas for example, have a significant impact on streamflow responses. These results are useful as they can be used to inform both water resources planning as well as urban planning to ensure that South Africa’s valuable water resources are protected. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
3

The impact of altered river structure on the function of selected urban Cape Town rivers

Newman, Natalie Nicolette January 2010 (has links)
Thesis (MTech (Nature Conservation))--Cape Peninsula University of Technology, 2010. / Many urban rivers are heavily engineered and no longer function naturally. The City of Cape Town has designed and implemented many stormwater and river management projects. Very little monitoring has occurred as to whether these engineering projects and remediation measures, have had a positive effect on our urban river ecosystem function. The study investigated the influence of specific engineering interventions such as the placement or rocks in stream to create weirs, gabion lining of stream channels, removal of canal walls, establishment of artificial wetlands, and approaches to urban river management, on river ecosystem function of the Keysers River, Little Lotus River, Langevlei Canal, Silvermine River, Moddergat River and Big Lotus River, as measured by specific indices including water chemistry and aquatic community structure (macroinvertebrates and diatoms).
4

The hydrological basis for the protection of water resources to meet environmental and societal requirements.

Taylor, Valerie. January 2006 (has links)
In common with other natural systems, aquatic ecosystems provide a wealth of economically valuable services and long-term benefits to society. However, growing human populations, coupled with increased aspirations for improved quality of life, have lead to intense pressure on the world's finite freshwater resources. Frequently, particularly in developing countries, there are both perceived and genuine incompatibilities between ecological and societal needs for freshwater. Environmental Flow Assessment (EFA) is essentially a tool for water resources management and its ultimate goal should be the integration of ecological and societal systems. While other ecological components (i.e. biological and geomorphological) are equally important to EFA, this thesis investigates the role of the hydrological cycle and the hydrological regime in providing the ecosystem goods and services upon which society depends. Ecological and societal systems operate at different temporal, spatial and organisational scales and hydronomic zoning or sub-zoning is proposed as an appropriate water resources management technique for matching these different scales. A major component of this thesis is a review of the South African water resources management framework and, in particular, the role of the Reserve (comprising a basic human right to survival water as well as an ecological right of the aquatic resource to maintain ecological functioning) in facilitating ecologically sustainable water resources management. South African water resources management is in the early stages of water allocation reform and the Department of Water Affairs and Forestry has stated that "the water allocation process must allow for the sustainable use of water resources and must promote the efficient and non-wasteful use of water". Thus, new ways of approaching the compromise between ecological and societal needs for freshwater water are required. This thesis argues that this requires that the focus of freshwater ecosystems be extended beyond the aquatic resource, so that societal activities on the catchment are linked to the protection of instream flows. Streamflow variability plays a major role in structuring the habitat templates that sustain aquatic and riparian ecological functioning and has been associated with increased biodiversity. Biodiversity and societal well-being are interlinked. However, there is a need in EFA for knowledge of the most influential components of the streamflow regime in order that stakeholders may anticipate any change in ecosystem goods and services as a result of their disruption to the hydrological cycle. The identification of high information hydrological indicators for characterising highly variable streamflow regimes is useful to water resources management, particularly where thresholds of streamflow regime characteristics have ecological relevance. Several researchers have revisited the choice of hydrological indices in order to ascertain whether some indices explain more of the hydrological variability in different aspects of streamflow regimes than others. However, most of the research relating to hydrological indices has focused primarily on regions with temperate climates. In this thesis multivariate analysis is applied to a relatively large dataset of readily computed ecologically relevant hydrological indices (including the Indicators of Hydrological Alteration and the South African Desktop Reserve Model indices) extracted from long-term records of daily flows at 83 sites across South Africa. Principal Component Analysis is applied in order to highlight general patterns of intercorrelation, or redundancy, among the indices and to identify a minimum subset of hydrological indices which explain the majority of the variation among the indices of different components of the streamflow regimes found in South Africa. The results indicate the value of including several of the IHA indices in EFAs for South African rivers. Statistical analysis is meaningful only when calculated for a sufficiently long hydrological record, and in this thesis the length of record necessary to obtain consistent hydrological indices, with minimal influence of climatic variation, is investigated. The results provide a guide to the length of record required for analysis of the high information hydrological indices representing the main components of the streamflow regime, for different streamflow types. An ecosystem-based approach which recognises the hydrological connectivity of the catchment landscape in linking aquatic and terrestrial systems is proposed as a framework for ecologically sustainable water resources management. While this framework is intended to be generic, its potential for application in the South African Water Allocation Reform is illustrated with a case study for the Mkomazi Catchment in KwaZulu-Natal. Hydronomic sub-zoning, based on the way in which societal activities disrupt the natural hydrological processes, both off-stream and instream, is applied to assess the incompatibilities between societal and ecological freshwater needs. Reference hydrological, or pre-development, conditions in the Mkomazi Catchment are simulated using the ACRU agrohydrological model. Management targets, based on the statistical analysis of pre-development streamflow regimes, are defined to assess the degree of hydrological alteration in the high information hydrological indices of the Mkomazi Catchment as a result of different societal activities. Hydrological alteration from predevelopment conditions is assessed using the Range of Variability Approach. The results indicate that the proposed framework is useful to the formulation of stakeholder-based catchment management plans. Applying hydrological records (either observed or simulated) as an ecological resource is highly appropriate for assessing the variability that ecosystems need to maintain the biodiversity, ecological functioning and resilience that people and society desire. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.

Page generated in 0.105 seconds