Spelling suggestions: "subject:"butress (hophysiology)ingesting"" "subject:"butress (hophysiology)detesting""
11 |
Test anxiety and coping with evaluationMettrick, Jon George 01 January 1998 (has links)
No description available.
|
12 |
The role of ionotropic glutamate receptors in the dorsomedial hypothalamus in the increase in core body temperature evoked by interoceptive and exteroceptive stresses in ratsMoreno, Maria 03 March 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Brain responds to an array of diverse challenges that are defined as either exteroceptive stress, involving cognitive processing of sensory information from the external environment and or interoceptive stress, detected through sensory neural or chemical cues from the internal environment. The physiological response to most stresses consists of autonomic responses that are essential for animal survival in the face of a threatening circumstance. However, it is known that exposition to continuous situations of stress is involved in the development of a series of diseases such as hypertension, myocardial infarction and panic syndrome. Several studies have shown that cells in a specific area of the brain, the dorsomedial hypothalamus (DMH), are involved in the response produced during emotional stress. However, the role of glutamatergic transmission in the DMH in the increase in body temperature induced by experimental stress has not been examined. Research findings thus far indicate that neurons in the DMH play a role in thermoregulation and that local glutamate receptors may be involved. The hypothesis of this thesis is that activity at ionotropic glutamate receptors in the DMH is necessary for the thermogenic response induced by experimental stress. In the present work, microinjections of kynurenate, an
excitatory amino acid antagonist, NBQX (2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione), an AMPA/kainate receptor antagonist, DL-2-amino-5-phosphonovaleric acid (APV), an NMDA receptor antagonist, and a mixture of NBQX and APV, were delivered to the DMH before exposure to experimental stress. The stress paradigms used include models for exteroceptive stress and interoceptive stress. The results show that inhibition of both NMDA and non-NMDA receptors is necessary to abolish the thermogenic response produced by all stress paradigms tested. Furthermore, there appears to be a difference in the degree of attenuation of the thermogenic response produced by either inhibition of NMDA receptors or non-NMDA receptors. Together these results support a definite role for ionotropic glutamate receptors within DMH region in the thermogenic response to stress. These results also finally show that the DMH is involved in all the major physiological stress responses including increase in plasma ACTH, increase in heart rate, blood pressure and now temperature as well.
|
13 |
Peak isokinetic torque of knee flexors and extensor muscles of college football playersBoerem, David L. 01 January 1987 (has links)
The problem of the study addressed knee injuries in college football. Imbalance of the musculature surrounding the knee would predispose the athlete to knee injury. Recognition of those who have muscular deficiencies would be a primary way of preventing knee injuries. The focus of the study was to determine if there was a significant difference in peak isokinetic torque of knee flexor and extensor muscles across speeds (60 degrees/second, 180 degrees/ second and 300 degrees/second) of a college football team subsequent to participation in a spring football season.
|
Page generated in 0.1563 seconds