Spelling suggestions: "subject:"detring processing"" "subject:"betring processing""
1 |
Indexed strings for large scale genomic analysisClifford, Raphael January 2002 (has links)
No description available.
|
2 |
Efficient Disk-Based Techniques for Manipulating Very Large String DatabasesAllam, Amin 18 May 2017 (has links)
Indexing and processing strings are very important topics in database management. Strings can be database records, DNA sequences, protein sequences, or plain text. Various string operations are required for several application categories, such as bioinformatics and entity resolution. When the string count or sizes become very large, several state-of-the-art techniques for indexing and processing such strings may fail or behave very inefficiently. Modifying an existing technique to overcome these issues is not usually straightforward or even possible.
A category of string operations can be facilitated by the suffix tree data structure, which basically indexes a long string to enable efficient finding of any substring of the indexed string, and can be used in other operations as well, such as approximate string matching. In this document, we introduce a novel efficient method to construct the suffix tree index for very long strings using parallel architectures, which is a major challenge in this category.
Another category of string operations require clustering similar strings in order to perform application-specific processing on the resulting possibly-overlapping clusters. In this document, based on clustering similar strings, we introduce a novel efficient technique for record linkage and entity resolution, and a novel method for correcting errors in a large number of small strings (read sequences) generated by the DNA sequencing machines.
|
3 |
Investigation into the wafer-scale integration of fine-grain parallel processing computer systemsJones, Simon Richard January 1986 (has links)
This thesis investigates the potential of wafer-scale integration (WSI) for the implementation of low-cost fine-grain parallel processing computer systems. As WSI is a relatively new subject, there was little work on which to base investigations. Indeed, most WSI architectures existed only as untried and sometimes vague proposals. Accordingly, the research strategy approached this problem by identifying a representative WSI structure and architecture on which to base investigations. An analysis of architectural proposals identified associative memory to be general purpose parallel processing component used in a wide range of WSI architectures. Furthermore, this analysis provided a set of WSI-level design requirements to evaluate the sustainability of different architectures as research vehicles. The WSI-ASP (WASP) device, which has a large associative memory as its main component is shown to meet these requirements and hence was chosen as the research vehicle. Consequently, this thesis addresses WSI potential through an in-depth investigation into the feasibility of implementing a large associative memory for the WASP device that meets the demanding technological constraints of WSI. Overall, the thesis concludes that WSI offers significant potential for the implementation of low-cost fine-grain parallel processing computer systems. However, due to the dual constraints of thermal management and the area required for the power distribution network, power density is a major design constraint in WSI. Indeed, it is shown that WSI power densities need to be an order of magnitude lower than VLSI power densities. The thesis demonstrates that for associative memories at least, VLSI designs are unsuited to implementation in WSI. Rather, it is shown that WSI circuits must be closely matched to the operational environment to assure suitable power densities. These circuits are significantly larger than their VLSI equivalents. Nonetheless, the thesis demonstrates that by concentrating on the most power intensive circuits, it is possible to achieve acceptable power densities with only a modest increase in area overheads.
|
Page generated in 0.0984 seconds