• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 12
  • 6
  • 3
  • 3
  • 2
  • Tagged with
  • 69
  • 69
  • 19
  • 19
  • 14
  • 14
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aproximantes de Padé e a série perturbativa da QCD nos decaimentos τ → (hádrons) + ντ / Padé Approximants and perturbative series of QCD in τ decays

Fabio Henrique Oliani 21 February 2018 (has links)
As correções perturbativas da QCD aos decaimentos hadrônicos do tau são obtidas a partir da expansão da função de Adler. Acredita-se que esta série é assintótica e melhor entendida quando sua transformada de Borel é considerada. Usamos o método matemático dos Aproximantes de Padé para reconstruir a transformada de Borel da série e extrair informação sobre as correções de ordens mais altas bem como os pólos devidos aos renôrmalons associados com a divergência da série. Primeiramente, testamos o método no limite large-β0 da QCD, onde a série perturbativa é conhecida em todas as ordens. Neste limite observamos que a variação de esquema de renormalização do acoplamento forte, αs, pode ser útil para a construção de aproximantes que convergem mais rapidamente. Aplicamos o método na QCD completa para obtermos previsões sobre as principais características da série. Em QCD a estrutura analítica da transformada de Borel da função de Adler torna as aproximações com Padés menos eficientes, o que se reflete em incertezas maiores. Chegamos ao resultado de 570 ± 285 para o coeficiente do termo α5s. Devido ao fato de a série prevista pelos aproximantes apresentar comportamento divergente de sinal não-alternado, há uma indicação de que singularidades do tipo infra-vermelho contribuem mais para os coeficientes da série em ordens intermediárias. Além disso, apesar de os resultados para a soma de Borel da função δ(0) serem compatíveis com as duas prescrições mais usadas para fixar a escala de renormalização em decaimentos do tau, o Padé apresenta uma leve preferência pela prescrição de ordem fixa (ou FOPT). / Perturbative QCD corrections to hadronic tau decays are obtained from the expansion of the Adler function. This series is believed to be asymptotic and is better understood when its Borel transform is considered. We use the mathematical method of Padé approximants to reconstruct the Borel transformed series and extract information about higher order corrections as well as renormalon poles associated with the divergence of the series. First, the method is tested in the large-β0 limit of QCD, where the perturbative series is known to all orders. In this limit, we observe that the renormalization scheme variation of the strong coupling, αs, can be useful in constructing approximants that converge faster. We apply the method in complete QCD to obtain predictions about the main characteristics of the series. In QCD, the analytical structure of the Borel transform of the Adler function makes the approximations with Padés less efficient, which is reflected in larger uncertainties. We obtain the result 570 ± 285 for the coefficient of the term α5s. The fixed sign nature of the series predicted by the PAs indicates that there is an indication that infrared singularities contribute more to the coefficients of the series in intermediate orders. In addition, although the results for the Borel sum of the function δ(0) are compatible with the two most frequently used prescriptions for setting the renormalization scale in tau decays, Padé approximants show a slight preference for fixed order prescription (or FOPT).
12

Aproximantes de Padé e a série perturbativa da QCD nos decaimentos τ → (hádrons) + ντ / Padé Approximants and perturbative series of QCD in τ decays

Oliani, Fabio Henrique 21 February 2018 (has links)
As correções perturbativas da QCD aos decaimentos hadrônicos do tau são obtidas a partir da expansão da função de Adler. Acredita-se que esta série é assintótica e melhor entendida quando sua transformada de Borel é considerada. Usamos o método matemático dos Aproximantes de Padé para reconstruir a transformada de Borel da série e extrair informação sobre as correções de ordens mais altas bem como os pólos devidos aos renôrmalons associados com a divergência da série. Primeiramente, testamos o método no limite large-β0 da QCD, onde a série perturbativa é conhecida em todas as ordens. Neste limite observamos que a variação de esquema de renormalização do acoplamento forte, αs, pode ser útil para a construção de aproximantes que convergem mais rapidamente. Aplicamos o método na QCD completa para obtermos previsões sobre as principais características da série. Em QCD a estrutura analítica da transformada de Borel da função de Adler torna as aproximações com Padés menos eficientes, o que se reflete em incertezas maiores. Chegamos ao resultado de 570 ± 285 para o coeficiente do termo α5s. Devido ao fato de a série prevista pelos aproximantes apresentar comportamento divergente de sinal não-alternado, há uma indicação de que singularidades do tipo infra-vermelho contribuem mais para os coeficientes da série em ordens intermediárias. Além disso, apesar de os resultados para a soma de Borel da função δ(0) serem compatíveis com as duas prescrições mais usadas para fixar a escala de renormalização em decaimentos do tau, o Padé apresenta uma leve preferência pela prescrição de ordem fixa (ou FOPT). / Perturbative QCD corrections to hadronic tau decays are obtained from the expansion of the Adler function. This series is believed to be asymptotic and is better understood when its Borel transform is considered. We use the mathematical method of Padé approximants to reconstruct the Borel transformed series and extract information about higher order corrections as well as renormalon poles associated with the divergence of the series. First, the method is tested in the large-β0 limit of QCD, where the perturbative series is known to all orders. In this limit, we observe that the renormalization scheme variation of the strong coupling, αs, can be useful in constructing approximants that converge faster. We apply the method in complete QCD to obtain predictions about the main characteristics of the series. In QCD, the analytical structure of the Borel transform of the Adler function makes the approximations with Padés less efficient, which is reflected in larger uncertainties. We obtain the result 570 ± 285 for the coefficient of the term α5s. The fixed sign nature of the series predicted by the PAs indicates that there is an indication that infrared singularities contribute more to the coefficients of the series in intermediate orders. In addition, although the results for the Borel sum of the function δ(0) are compatible with the two most frequently used prescriptions for setting the renormalization scale in tau decays, Padé approximants show a slight preference for fixed order prescription (or FOPT).
13

Coherent strong field interactions between a nanomagnet and a photonic cavity

Soykal, Öney Orhunç 01 July 2010 (has links)
Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ∼ 1 mm radius with a nanomagnet of ∼ 100 nm radius and ferromagnet resonance frequency of ∼ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
14

Three dimensional fluid structural interaction of tissue valves

Govindarajan, Vijay 01 May 2013 (has links)
This thesis presents a stable fluid structural interaction technique to simulate the dynamics of tissue valves including bio-prosthetic heart valves and natural heart valves under physiological Reynolds numbers. A partitioned approach is implemented where the equations governing the flow and the displacement of the structure are solved using two distinct solvers. A FEAP based solid solver is strongly coupled to the p-ELAFINT flow solver using subiteration procedure. The flow solver has been massively parallelized so that the domain can be distributed among several processors. The fixed Cartesian method with adaptive mesh refinement in p-ELAFINT enables us to perform fast and efficient flow computations of problem involving moving boundaries such as heart valve leaflets. To capture the structure deformation, Enhanced Assumed Solid shell element has been implemented into the solid solver which is known for its locking free and superior bending characteristics. Aitken Relaxation method which dynamically computes the relaxation parameter is used for relaxing the solid displacement in the FSI coupling. This helps the subiteration procedure to achieve a faster convergence compared to traditional Subiterative procedures with fixed relaxation parameter. Fung type material model with experimentally derived parameters is used as the constitutive model to capture the realistic solid deformation. Opening phase of a bicuspid aortic valve (BAV) model derived from a patient specific data and a pericardial bioprosthetic valve model were simulated using the FSI algorithm with realistic material parameters under physiological flow conditions. It was observed that the valves attained its fully open position under 35 milliseconds which is similar to the physiological opening. The bioprosthetic valve attained a fully circular orifice while the BAV attained an ellipsoidal shaped orifice at its fully open position. In the BAV, strong vortical patterns were observed at peak systole and recirculation zones were observed near the sino-tubular junction. The work presented in this thesis be seen as a platform from which complex patient specific data can be modeled under physiological conditions and as a base to include contact mechanics with which complete cardiac cycle can be simulated.
15

Dispositifs quantiques en régime de couplage ultra-fort lumière-matière pour l'optoélectronique dans le moyen infrarouge

Jouy, Pierre 10 February 2012 (has links) (PDF)
Ce travail porte sur la réalisation de dispositifs quantiques fonctionnant en régime de couplage fort entre une excitation d'un gaz d'électrons dans un puits quantique semiconducteur et un mode de cavité dans le moyen infra- rouge. Les quasi-particules issues de ce couplage lumière-matière sont appelées "polaritons intersousbande". La première partie de ce manuscrit est consacrée à l'étude d'un dis- positif électroluminescent basé sur une structure à cascade quantique in- sérée dans une microcavité planaire. Par une analyse détaillée des spectres d'électroluminescence à différents voltages, je démontre que les états de po- laritons sont peuplés de façon résonante, à une énergie qui dépend du voltage appliqué à la structure. Les résultats expérimentaux sont analysés et in- terprétés à l'aide d'un modèle reliant les spectres d'électroluminescence aux propriétés de l'injecteur de la structure à cascade. Pour augmenter la sélectivité de l'injection et observer ainsi une exaltation de l'émission spontanée, un nouveau type de cavité est développé dans la sec- onde partie de ce travail. Il s'agit d'une cavité basée sur un confinement plas- monique, dans laquelle la lumière est confinée entre deux plans métalliques, dans une épaisseur très inférieure à la longueur d'onde. Le miroir supérieur est façonné en réseau. L'influence des différents paramètres du réseau est étudiée et deux régimes sont mis en évidence: un régime où le mode de cavité se couple à un mode de plasmon de surface et un régime où le mode de cavité ne présente pas de dispersion en énergie. En insérant des puits quantiques dopés dans une cavité de ce deuxième type, les régimes de couplage fort puis de couplage ultra-fort lumière-matière sont démontrés jusqu'à température ambiante. La valeur importante du dédoublement de Rabi et la forte densité d'états polaritoniques obtenues dans ce type de cavité en font un candidat très prometteur pour la réalisation de dispositifs électroluminescents infrarouges de grande efficacité radiative et fonctionnant sans inversion de population.
16

Quantum transport in a normal metal/odd-frequency superconductor junction

Linder, Jacob, Yokoyama, Takehito, Tanaka, Yukio, Asano, Yasuhiro, Sudbø, Asle 05 1900 (has links)
No description available.
17

Numerical study of the crossover from free electrons to small polarons

Li, Zhou Unknown Date
No description available.
18

Strong-Coupling Quantum Dynamics in a Structured Photonic Band Gap: Enabling On-chip All-optical Computing

Ma, Xun Jr. 17 December 2012 (has links)
In this thesis, we demonstrate a new type of resonant, nonlinear, light-matter interaction facilitated by the unique electromagnetic vacuum density-of-state (DOS) structure of Photonic Band Gap (PBG) materials. Strong light localization inside PBG waveguides allows extremely strong coupling between laser fields and embedded two-level quantum dots (QD). The resulting Mollow splitting is large enough to traverse the precipitous DOS jump created by a waveguide mode cutoff. This allows the QD Bloch vector to sense the non-smoothness of the vacuum structure and evolve in novel ways that are forbidden in free space. These unusual strong-coupling effects are described using a "vacuum structure term" of the Bloch equation, combined with field-dependent relaxation rates experienced by the QD Bloch vector. This leads to alternation between coherent evolution and enhanced relaxation. As a result, dynamic high-contrast switching of QD populations can be realized with a single beam of picosecond pulses. During enhanced relaxation to a slightly inverted steady state at the pulse peak, the Bloch vector rapidly switches from anti-parallel to parallel alignment with the pulse torque vector. This then leads to a highly inverted state through subsequent coherent "adiabatic following" near the pulse tail, providing a robust mechanism for picosecond, femto-Joule all-optical switching. The simultaneous input of a second, weaker (signal) driving beam at a different frequency on top of the stronger (holding) beam enables rich modulation effects and unprecedented coherent control over the QD population. This occurs through resonant coupling of the signal pulse with the Mollow sideband transitions created by the holding pulse, leading to either augmentation or negation of the final QD population achieved by the holding pulse alone. This effect is applied to ultrafast all-optical logic AND, OR and NOT gates in the presence of significant (0.1 THz) nonradiative dephasing and (about 1%) inhomogeneous broadening. Further numerical studies of pulse evolutions inside the proposed devices demonstrate satisfactory population contrast within a PBG waveguide length of about 10 micro meter. These results provide the building blocks for low-power, ultrafast, multi-wavelength channel, on-chip, all-optical computing.
19

Strong-Coupling Quantum Dynamics in a Structured Photonic Band Gap: Enabling On-chip All-optical Computing

Ma, Xun Jr. 17 December 2012 (has links)
In this thesis, we demonstrate a new type of resonant, nonlinear, light-matter interaction facilitated by the unique electromagnetic vacuum density-of-state (DOS) structure of Photonic Band Gap (PBG) materials. Strong light localization inside PBG waveguides allows extremely strong coupling between laser fields and embedded two-level quantum dots (QD). The resulting Mollow splitting is large enough to traverse the precipitous DOS jump created by a waveguide mode cutoff. This allows the QD Bloch vector to sense the non-smoothness of the vacuum structure and evolve in novel ways that are forbidden in free space. These unusual strong-coupling effects are described using a "vacuum structure term" of the Bloch equation, combined with field-dependent relaxation rates experienced by the QD Bloch vector. This leads to alternation between coherent evolution and enhanced relaxation. As a result, dynamic high-contrast switching of QD populations can be realized with a single beam of picosecond pulses. During enhanced relaxation to a slightly inverted steady state at the pulse peak, the Bloch vector rapidly switches from anti-parallel to parallel alignment with the pulse torque vector. This then leads to a highly inverted state through subsequent coherent "adiabatic following" near the pulse tail, providing a robust mechanism for picosecond, femto-Joule all-optical switching. The simultaneous input of a second, weaker (signal) driving beam at a different frequency on top of the stronger (holding) beam enables rich modulation effects and unprecedented coherent control over the QD population. This occurs through resonant coupling of the signal pulse with the Mollow sideband transitions created by the holding pulse, leading to either augmentation or negation of the final QD population achieved by the holding pulse alone. This effect is applied to ultrafast all-optical logic AND, OR and NOT gates in the presence of significant (0.1 THz) nonradiative dephasing and (about 1%) inhomogeneous broadening. Further numerical studies of pulse evolutions inside the proposed devices demonstrate satisfactory population contrast within a PBG waveguide length of about 10 micro meter. These results provide the building blocks for low-power, ultrafast, multi-wavelength channel, on-chip, all-optical computing.
20

Novo método de grupo de renormalização numérico aplicado ao cálculo da susceptibilidade magnética no modelo de Anderson de duas impurezas / New method of numerical renormalization group applied to the calculation of the magnetic susceptibility in the two-impurity

Jeremias Borges da Silva 01 June 1994 (has links)
Este trabalho introduz uma nova discretização da banda de condução no método de Grupo de Renormalização Numérico. Com essa técnica, a susceptibilidade magnética do modelo de Anderson de duas impurezas, no limite Kondo, e calculada. Como ilustração, a densidade espectral do modelo também é calculada. A nova técnica baseia-se na simetria de paridade do modelo para discretizar diferentemente à banda de condução associada a cada paridade. Sua extensão ao modelo de rede é indicada. A técnica reduz o tempo computacional e permite usar maiores valores do parâmetro de discretização do que no método tradicional. Para um mesmo tempo de cálculo, nossos resultados são muito mais precisos do que os encontrados na literatura. A susceptibilidade é calculada na aproximação de acoplamento independente da energia. Uma interação de troca, tipo RKKY, é somado ao Hamiltoniano do modelo. Para acoplamento ferromagnético, obtém-se efeito Kondo de dois estágios. O estado fundamental é singleto com defasagem de PI/2 na banda de condução. Para acoplamento antiferromagnético fraco, um efeito Kondo é obtido. Para fortes acoplamentos antiferromagnéticos, o estado fundamental e singleto sem defasagens. Um ponto fixo instável é observado separando as regiões de estado fundamental Kondo e antiferromagnético. Nesse ponto a susceptibilidade é nula e a defasagem é indefinida. / This work introduces an extension of the Numerical Renormalization Group approach to compute thermodynamically properties of impurities in metals, based on a novel logarithmic discretization of the conduction band. On the basis of the new method, the thermal dependence of the magnetic susceptibility for the Kondo limit of the two-impurity Anderson model is computed. As another illustration, the impurity spectral density for the same model is calculated analytically in the weakly correlated regime. The new approach takes advantage of the parity-inversion symmetry of the model to discretize differently the odd and the even conduction channels (for Ni impurities, the conduction band could likewise be divided into Ni channels, each of which would be discretized in a different way). The resulting mesh describes better the continuum of the conduction states than the mesh in the standard Numerical Renormalization Group method; as a consequence, the new procedure is substantially less expensive when computing any given thermodynamical property with a given accuracy, thus we are able to compute the temperature dependence of the magnetic susceptibility with a small fraction of the effort involved in the recently reported computation of the ground state properties for the two impurity Kondo model. As in previous Renormalization Group work, the model Hamiltonian is diagonalized within the energy-independent coupling approximation. One well-known shortcoming of this approximation is its inability to generate antiferromagnetic RKKY couplings between the impurities; to compensate, again following previous work; we have added to the Hamiltonian an artificial exchange coupling Io. For weak antiferromagnetic or ferromagnetic couplings, the effective magnetic moment of the impurities decreases with temperature, and as in the one-impurity Kondo effect, the ground-state conduction band is phase shifted by PI /2. For strong ferromagnetic coupling, the Kondo effect takes place in two stages, one for each conduction channel. For strong antiferromagnetic coupling, the magnetic moment also decreases, rapidly, with temperature, but the ground state conduction-band phase shift is zero. The regions of zero and PI /2 ground-state phase shifts are separated by an unstable fixed point. At this point, the magnetic susceptibility vanishes.

Page generated in 0.0875 seconds