1 |
Dynamical mean-field theory for manganitesYang, Yi-feng, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
|
2 |
Optisch erzeugte kleine Polaronen in Lithiumniobat Einfluss homogener und räumlich periodisch modulierter Konzentrationen von intrinsischen und extrinsischen Defekten auf die transiente polaronische AbsorptionSchoke, Bettina January 2010 (has links)
Zugl.: Osnabrück, Univ., Diss., 2010
|
3 |
Embedded-Cluster-Simulationen zur Struktur von Ti3+-Polaronen und Sauerstoff-Leerstellen in BaTiO3Birkholz, Axel. Unknown Date (has links)
Universiẗat, Diss., 1999--Osnabrück.
|
4 |
Berechnung der zeitlichen Dynamik gekoppelter Exziton-Phonon-Systeme mitHerfort, Ulrich 17 July 2000 (has links)
No description available.
|
5 |
Berechnung der zeitlichen Dynamik gekoppelter Exziton-Phonon-Systeme mit Hilfe unitärer TransformationenHerfort, Ulrich. January 2000 (has links)
Stuttgart, Univ., Diss., 2000.
|
6 |
Jahn-Teller-Polaronen in Bariumtitanat und ihr Verhalten unter uniaxialem DruckLenjer, Susanne. Unknown Date (has links)
Universiẗat, Diss., 1999--Osnabrück.
|
7 |
Energy Level Alignment in Hybrid Bulk Heterojunctions and New Redox Mediators for Quantum Dot Solar CellsHaring, Andrew 27 June 2016 (has links)
The advancement of quantum dot sensitized solar cell (QDSSC) technology depends on optimizing directional charge transfer between light absorbing quantum dots, TiO2, and a redox mediator. Kinetically, reduction of oxidized quantum dots by the redox mediator should be rapid and faster than the back electron transfer between TiO2 and oxidized quantum dots to maintain photocurrent. Thermodynamically, the reduction potential of the redox mediator should be sufficiently positive to provide high photovoltages. To satisfy both criteria and enhance power conversion efficiencies, we introduced charge transfer spin-crossover MnII/III complexes as promising redox mediator alternatives in QDSSCs. High photovoltages ~ 1 V were achieved by a series of Mn poly(pyrazolyl)borates, with reduction potentials ~0.51 V vs Ag/AgCl. Back electron transfer rates were slower than Co(bpy)3, where bpy = 2,2'-bipyridine. This is indicative of a large barrier to recombination imposed by spin-crossover in these complexes. By capitalizing on these characteristics, efficient MnII/III-based QDSSCs can be achieved with more soluble Mn-complexes.
In hybrid bulk heterojunction solar cells (HBHJs), light-absorbing conjugated polymers are interfaced with films of nanostructured TiO2. Photovoltaic action requires photoelectrons in the polymer to transfer into the TiO2, and therefore, polymers are designed with lowest unoccupied molecular orbital levels higher in energy than the conduction band of TiO2 for thermodynamically favorable electron transfer. Currently, the energy level values used to guide solar cell design are referenced from the separated materials, neglecting the fact that upon heterojunction formation material energetics are altered. With spectroelectrochemistry, we discovered that spontaneous charge transfer occurs upon heterojunction formation between poly(3-hexylthiophene) (P3HT) and TiO2. It was determined that deep trap states in TiO2 accept electrons from P3HT and form hole polarons in the polymer. This equilibrium charge separation alters energetics through the formation of interfacial dipoles and results in band bending that inhibits desired photoelectron injection into TiO2, limiting HBHJ solar cell performance. New guidelines for improved photocurrent are proposed by tuning the energetics of the heterojunction to reverse the direction of the interfacial dipole, enhancing photoelectron injection. / Master of Science
|
8 |
Vórtices e impurezas em superfluidos atômicos: expansão auto-similar e polaron Tkachenko / Vortices and impurities in atomic superfluids: self-similar expansion and Tkachenko polaronCaracanhas, Mônica Andrioli 06 June 2014 (has links)
Neste projeto de doutorado estudamos dois aspectos em condensados de Bose-Einstein de gases alcalinos diluídos: (i) a expansão auto-similar de um superfluido turbulento, e (ii) a física dos pólarons no contexto de misturas de superfluidos e redes de vórtices. Ambas as análises estão relacionadas com nossas tendências experimentais em átomos frios. Na primeira etapa generalizamos as equações hidrodinâmicas dos superfluidos para descrever a expansão anômala de uma nuvem condensada turbulenta. A física por detrás dessa assinatura característica da natureza turbulenta da nuvem pôde ser compreendida através das equações derivadas em nosso modelo, que considerou a energia cinética advinda de uma configuração de vórtices enovelados. Na segunda parte do trabalho abordamos a física do pólaron, analisando as propriedades de uma impureza neutra acoplada com os modos Tkachenkos de um condensado de Bose-Einstein contendo uma rede de vórtices. Através da função espectral da impureza, pudemos acompanhar a evolução das propriedades de quase-partícula em função da magnitude do parâmetro de interação, à medida que caminhávamos em direção ao regime de baixas energias do sistema. A função espectral apresentou inicialmente um alargamento do seu perfil Lorentziano para baixos valores dos momentos da impureza e das excitações, mesmo a temperatura zero. Ao atingir a proximidade de um ponto fixo de baixas energias, porém, o espectro passa a adquirir um perfil de decaimento com lei de potência. Trata-se de uma assinatura do fenômeno da catástrofe de ortogonalidade, com a quebra da natureza de quase-particula do sistema. Aplicamos uma transformação canônica com operadores unitários e técnicas de grupo de renormalização para avaliar o fluxo das constantes da teoria à medida que diminuíamos as escalas de energia características do nosso sistema. Na etapa final apresentamos alguns resultados preliminares sobre o sistema de duas espécies de condensado sobrepostas, uma delas contendo a rede de vórtices. Por meio de uma analogia com superfluidos em redes ópticas, mapeamos nosso Hamiltoniano em um modelo Bose-Hubbard e variamos o comprimento de espalhamento atômico das espécies envolvidas para induzir a transição de fase quântica naquela aprisionada na rede. Mostramos que essa nossa nova configuração quântica de rede permite investigações que vão além daquelas estudadas com redes ópticas estáticas. / In this thesis we studied two aspects of Bose-Einstein condensation in dilute gases: (i) the self-similar expansion of a turbulent superfluidity, and (ii) the polaron physics in the context of the superfluid mixtures and vortex lattices. Both analyses are closely related to our experimental trends. Concerning the first subject, we generalized the superfluid hydrodynamic equations to describe the anomalous expansion of a turbulent condensate cloud. The physics behind this characteristic signature of the turbulence could be clarified through the expressions derived in our model, that considered the kinetic energy associated with a tangled vortex configuration. As for the second item, we present the polaron physics of a neutral impurity coupled with the Tkachenko modes of a vortex lattice Bose-Einstein condensate. Through the impurity spectral function, we tracked how the quasiparticle properties varied as a function of the interaction strength toward the lower energy regimes. The spectral function exhibits a Lorentzian broadening for small wave vectors, even at zero temperature, until it starts to reach the low energy fixed point, where it acquires a power law decay. That is the signature of orthogonality catastrophe phenomena, with the breakdown of the quasiparticle picture. We applied canonical unitary transform and renormalization group equations to evaluate the flow of the theory parameters as we go further down in the characteristic energy scales. Finally, we provide preliminary results on the calculation of a system composed of two condensate species, one immersed in a second containing an array of vortices. Making an analogy with superfluids in an optical lattice, we map our Hamiltonian onto a Bose-Hubbard type model and tune the atomic scattering length of the two species to induce a quantum phase transition in the confined cloud. This is a new quantum system which allows investigation beyond the present studies with static optical lattices.
|
9 |
Vórtices e impurezas em superfluidos atômicos: expansão auto-similar e polaron Tkachenko / Vortices and impurities in atomic superfluids: self-similar expansion and Tkachenko polaronMônica Andrioli Caracanhas 06 June 2014 (has links)
Neste projeto de doutorado estudamos dois aspectos em condensados de Bose-Einstein de gases alcalinos diluídos: (i) a expansão auto-similar de um superfluido turbulento, e (ii) a física dos pólarons no contexto de misturas de superfluidos e redes de vórtices. Ambas as análises estão relacionadas com nossas tendências experimentais em átomos frios. Na primeira etapa generalizamos as equações hidrodinâmicas dos superfluidos para descrever a expansão anômala de uma nuvem condensada turbulenta. A física por detrás dessa assinatura característica da natureza turbulenta da nuvem pôde ser compreendida através das equações derivadas em nosso modelo, que considerou a energia cinética advinda de uma configuração de vórtices enovelados. Na segunda parte do trabalho abordamos a física do pólaron, analisando as propriedades de uma impureza neutra acoplada com os modos Tkachenkos de um condensado de Bose-Einstein contendo uma rede de vórtices. Através da função espectral da impureza, pudemos acompanhar a evolução das propriedades de quase-partícula em função da magnitude do parâmetro de interação, à medida que caminhávamos em direção ao regime de baixas energias do sistema. A função espectral apresentou inicialmente um alargamento do seu perfil Lorentziano para baixos valores dos momentos da impureza e das excitações, mesmo a temperatura zero. Ao atingir a proximidade de um ponto fixo de baixas energias, porém, o espectro passa a adquirir um perfil de decaimento com lei de potência. Trata-se de uma assinatura do fenômeno da catástrofe de ortogonalidade, com a quebra da natureza de quase-particula do sistema. Aplicamos uma transformação canônica com operadores unitários e técnicas de grupo de renormalização para avaliar o fluxo das constantes da teoria à medida que diminuíamos as escalas de energia características do nosso sistema. Na etapa final apresentamos alguns resultados preliminares sobre o sistema de duas espécies de condensado sobrepostas, uma delas contendo a rede de vórtices. Por meio de uma analogia com superfluidos em redes ópticas, mapeamos nosso Hamiltoniano em um modelo Bose-Hubbard e variamos o comprimento de espalhamento atômico das espécies envolvidas para induzir a transição de fase quântica naquela aprisionada na rede. Mostramos que essa nossa nova configuração quântica de rede permite investigações que vão além daquelas estudadas com redes ópticas estáticas. / In this thesis we studied two aspects of Bose-Einstein condensation in dilute gases: (i) the self-similar expansion of a turbulent superfluidity, and (ii) the polaron physics in the context of the superfluid mixtures and vortex lattices. Both analyses are closely related to our experimental trends. Concerning the first subject, we generalized the superfluid hydrodynamic equations to describe the anomalous expansion of a turbulent condensate cloud. The physics behind this characteristic signature of the turbulence could be clarified through the expressions derived in our model, that considered the kinetic energy associated with a tangled vortex configuration. As for the second item, we present the polaron physics of a neutral impurity coupled with the Tkachenko modes of a vortex lattice Bose-Einstein condensate. Through the impurity spectral function, we tracked how the quasiparticle properties varied as a function of the interaction strength toward the lower energy regimes. The spectral function exhibits a Lorentzian broadening for small wave vectors, even at zero temperature, until it starts to reach the low energy fixed point, where it acquires a power law decay. That is the signature of orthogonality catastrophe phenomena, with the breakdown of the quasiparticle picture. We applied canonical unitary transform and renormalization group equations to evaluate the flow of the theory parameters as we go further down in the characteristic energy scales. Finally, we provide preliminary results on the calculation of a system composed of two condensate species, one immersed in a second containing an array of vortices. Making an analogy with superfluids in an optical lattice, we map our Hamiltonian onto a Bose-Hubbard type model and tune the atomic scattering length of the two species to induce a quantum phase transition in the confined cloud. This is a new quantum system which allows investigation beyond the present studies with static optical lattices.
|
10 |
Charged Domain Walls in Ferroelectric Single Crystals / Geladene Domänenwände in ferroelektrischen EinkristallenKämpfe, Thomas 01 June 2017 (has links) (PDF)
Charged domain walls (CDWs) in proper ferroelectrics are a novel route towards the creation of advancing functional electronics. At CDWs the spontaneous polarization obeying the ferroelectric order alters abruptly within inter-atomic distances. Upon screening, the resulting charge accumulation may result in the manifestation of novel fascinating electrical properties. Here, we will focus on electrical conduction. A major advantage of these ferroelectric DWs is the ability to control its motion upon electrical fields. Hence, electrical conduction can be manipulated, which can enrich the possibilities of current electronic devices e.g. in the field of reconfigurability, fast random access memories or any kind of adaptive electronic circuitry.
In this dissertation thesis, I want to shed more light onto this new type of interfacial electronic conduction on inclined DWs mainly in lithium niobate/LiNbO3 (LNO). The expectation was: the stronger the DW inclination towards the polar axis of the ferroelectric order and, hence, the larger the bound polarization charge, the larger the conductivity to be displayed. The DW conductance and the correlation with polarization charge was investigated with a multitude of experimental methods as scanning probe microscopy, linear and nonlinear optical microscopy as well as electron microscopy. We were able to observe a clear correlation of the local DW inclination angle with the DW conductivity by comparing the three-dimensional DW data and the local DW conductance.
We investigated the conduction mechanisms on CDWs by temperature-dependent two-terminal current-voltage sweeps and were able to deduce the transport to be given by small electron polaron hopping, which are formed after injection into the CDWs. The thermal activated transport is in very good agreement with time-resolved polaron luminescence spectroscopy. The applicability of this effect for non-volatile memories was investigated in metal-ferroelectric-metal stacks with CMOS compatible single-crystalline films. These films showed unprecedented endurance, retention, precise set voltage, and small leakage currents as expected for single crystalline material. The conductance was tuned and switched according to DW switching time and voltage. The formation of CDWs has proven to be extremely stable over at least two months. The conductivity was further investigated via microwave impedance microscopy, which revealed a DW conductivity of about 100 to 1000 S/m at microwave frequencies of about 1 GHz. / Geladene Domänenwände (DW) in reinen Ferroelektrika stellen eine neue Möglichkeit zur Erzeugung zukünftiger, funktionalisierter Elektroniken dar. An geladenen DW ändert sich die Polarisation sehr abrupt - innerhalb nur weniger Atomabstände. Sofern die dadurch hervorgerufene Ladungsträgeranreicherung elektrisch abgeschirmt werden kann, könnte dies zu faszinierenden elektrischen Eigenschaften führen. Wir möchten uns hierbei jedoch auf die elektrische Leitfähigkeit beschränken. Ein großer Vorteil für die Anwendung leitfähiger DW ist deren kontrollierte Bewegung unter Einwirkung elektrischer Felder. Dies ermöglicht die Manipulation das Ladungstransports, welches zum Beispiel im Bereich der Rekonfigurierbarkeit, schneller Speicherbauelemente und jeder Art von adaptiven elektronischen Schaltungen Anwendung finden kann.
In dieser Dissertationsschrift möchte ich diesen neuen Typus grenzflächiger elektronischen Ladungstransports an geladenen DW hauptsächlich am Beispiel von Lithiumniobat/-LiNbO3 (LNO) untersuchen. Die Annahme lautete hierbei: umso stärker die DW zur ferroelektrischen Achse geneigt ist, also desto stärker die gebundene Polarisationsladung und folglich die elektrische DW-Leitfähigkeit. Die elektrische DW-Leitfähigkeit und die Korrelation mit der Polarisationsladung wurde mit verschiedenen experimentellen Methoden wie Rasterkraftmikroskopie, linearer und nichtlinearer optischer Mikroskopie als auch Elektronenmikroskopie untersucht. Es konnte eine klare Korrelation durch Vergleich der dreidimensionalen DW-Aufzeichnungsdaten mit der lokalen Leitfähigkeit gezeigt werden.
Wir haben weiterhin den Leitfähigkeitsmechanismus an geladenen DW mittels temperaturabhängiger Strom-Spannungskennlinien untersucht und konnten hierbei einen Hopping-Transport kleiner Elektronenpolaronen nachweisen, welche nach Elektroneninjektion in die geladene DW generiert werden. Der thermisch aktivierte Ladungsträgertransport ist in guter Übereinstimmung mit zeitaufgelöster Polaron-Lumineszenzspektroskopie. Die Anwendbarkeit dieses Effektes für nicht-volatile Speicherbauelemente wurde an Metall-Ferroelektrika-Metall Schichtstrukturen mit CMOS-kompatiblen einkristalliner Filmen untersucht. Die Filme zeigen bisher nichtgesehene Durchhalte- und Speichervermögen, genau definierte Schaltspannung sowie sehr geringe Leckageströme wie dies für einkristalline Materialsysteme erwartet wird. Die Leitfähigkeit konnte mittels entsprechender Wahl der elektrischen Schaltzeiten und -spannungen zielgerichtet manipuliert und geschalten werden. Es konnte darüber hinaus gezeigt werden, dass die hergestellten geladenen DW über eine Zeitspanne von mindestens zwei Monaten stabil sind und hierbei leitfähig bleiben. Die Leitfähigkeit der DW wurde weiterhin mittels Mikrowellenimpedanzmikroskopie untersucht. Dabei konnten DW-Leitfähigkeiten von 100 bis 1000 S/m für Mikrowellenfrequenzen von etwa 1GHz ermittelt werden.
|
Page generated in 0.0489 seconds