• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 8
  • 5
  • 4
  • Tagged with
  • 47
  • 47
  • 21
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

NMR Structure Improvement: A Structural Bioinformatics & Visualization Approach

Block, Jeremy January 2010 (has links)
<p>The overall goal of this project is to enhance the physical accuracy of individual models in macromolecular NMR (Nuclear Magnetic Resonance) structures and the realism of variation within NMR ensembles of models, while improving agreement with the experimental data. A secondary overall goal is to combine synergistically the best aspects of NMR and crystallographic methodologies to better illuminate the underlying joint molecular reality. This is accomplished by using the powerful method of all-atom contact analysis (describing detailed sterics between atoms, including hydrogens); new graphical representations and interactive tools in 3D and virtual reality; and structural bioinformatics approaches to the expanded and enhanced data now available.</p> <p> The resulting better descriptions of macromolecular structure and its dynamic variation enhances the effectiveness of the many biomedical applications that depend on detailed molecular structure, such as mutational analysis, homology modeling, molecular simulations, protein design, and drug design.</p> / Dissertation
12

Functional characterization of proteins involved in cell cycle by structure-based computational methods

Sontheimer, Jana 14 May 2012 (has links) (PDF)
In the recent years, a rapidly increasing amount of experimental data has been generated by high-throughput technologies. Despite of these large quantities of protein-related data and the development of computational prediction methods, the function of many proteins is still unknown. In the human proteome, at least 20% of the annotated proteins are not characterized. Thus, the question, how to predict protein function from its amino acid sequence, remains to be answered for many proteins. Classical bioinformatics approaches for function prediction are based on inferring function from well-characterized homologs, which are identified based on sequence similarity. However, these methods fail to identify distant homologs with low sequence similarity. As protein structure is more conserved than sequence in protein families, structure-based methods (e.g. fold recognition) may recognize possible structural similarities even at low sequence similarity and therefore provide information for function inference. These fold recognition methods have already been proven to be successful for individual proteins, but their automation for high-throughput application is difficult due to intrinsic challenges of these techniques, mainly caused by a high false positive rate. Automated identification of remote homologs based on fold recognition methods would allow a signi cant improvement in functional annotation of proteins. My approach was to combine structure-based computational prediction methods with experimental data from genome-wide RNAi screens to support the establishment of functional hypotheses by improving the analysis of protein structure prediction results. In the first part of my thesis, I characterized proteins from the Ska complex by computational methods. I showed the benefit of including experimental information to identify remote homologs: Integration of functional data helped to reduce the number of false positives in fold recognition results and made it possible to establish interesting functional hypotheses based on high con dence structural predictions. Based on the structural hypothesis of a GLEBS motif in c13orf3 (Ska3), I could derive a potential molecular mechanism that could explain the observed phenotype. In the second part of my thesis, my goal was to develop computational tools and automated analysis techniques to be able to perform structure-based functional annotation in a high-throughput way. I designed and implemented key tools that were successfully integrated into a computational platform, called StrAnno, which I set up together with my colleagues. These novel computational modules include a domain prediction algorithm and a graphical overview that facilitates and accelerates the analysis of results. StrAnno can be seen as a first step towards automatic functional annotation of proteins by structure-based methods. First, the analysis of long hit lists to identify promising candidates for further analysis is substantially facilitated by integration and combination of various sequence-based computational tools and data from functional databases. Second, the developed post-processing tools accelerate the evaluation of structural and functional hypotheses. False positives from the threading result lists are removed by various filters, and analysis of the possible true positives is greatly enhanced by the graphical overview. With these two essential benefits, fold recognition techniques are applicable to large-scale approaches. By applying this developed methodology to hits from a genome-wide cell cycle RNAi screen and evaluating structural hypotheses by molecular modeling techniques, I aimed to associate biological functions to human proteins and link the RNAi phenotype to a molecular function. For two selected human proteins, c20orf43 and HJURP, I could establish interesting structural and functional hypotheses. These predictions were based on templates with low sequence identity (10-20%). The uncharacterized human protein c20orf43 might be a E3 SUMO-ligase that could be involved either in DNA repair or rRNA regulatory processes. Based on the structural hypotheses of two domains of HJURP, I predicted a potential link to ubiquitylation processes and direct DNA binding. In addition, I substantiated the cell cycle arrest phenotype of these two genes upon RNAi knockdown. Fold recognition methods are a promising alternative for functional annotation of proteins that escape sequence-based annotation due to their low sequence identity to well-characterized protein families. The structural and functional hypotheses I established in my thesis open the door to investigate the molecular mechanisms of previously uncharacterized proteins, which may provide new insights into cellular mechanisms.
13

Recherche de nouveaux antipaludiques par bioinformatique structurale et chémoinformatique : application à deux cibles : PfAMA1 et PfCCT / Identification of new antimalarial molecules by structural bioinformatics and cheminformatics : application to two targets : PfAMA1 and PfCCT

Pihan, Émilie 02 July 2013 (has links)
Le paludisme est causé par cinq espèces du genre Plasmodium, P. falciparum étant le plus mortel. Des résistances de certaines souches du parasite ont été rapportées pour tous les médicaments mis sur le marché. Les moustiques vecteurs du parasite sont résistants aux insecticides et aucun vaccin n'est disponible. Cette maladie est un problème économique et de santé publique pour les pays en voie de développement. Mes travaux de thèses visent à identifier de nouveaux traitements contre le paludisme, en ciblant deux nouvelles protéines. Les Apicomplexes ont développé un mécanisme unique d'invasion, impliquant une interaction forte entre la cellule hôte et la surface du parasite, appelée jonction mobile. La caractérisation structurale et fonctionnelle du complexe AMA1-RON2 a ouvert la voie à la découverte de petites molécules capables d'empêcher l'interaction AMA1-RON2 et de ce fait, l'invasion. Le parasite a aussi besoin de phospholipides pour construire sa membrane durant le cycle érythrocytaire. Il y a six fois plus de phospholipides dans les érythrocytes infectés que dans les érythrocytes sains. Notre stratégie est d'inhiber la voie de synthèse de novo Kennedy et plus précisément, son étape limitante catalysée par la PfCCT. Des filtres basés sur le ligand (LBVS) et sur la structure (SBVS) ont été utilisés pour tester virtuellement les chimiothèques commerciales que j'ai préparées. Pour chaque projet, des molécules ont été sélectionnées pour leurs scores de docking et les interactions qu'elles établissent avec les résidus clés de la protéine. En combinant la bioinformatique structurale et la chémoinformatique, nous avons identifié des inhibiteurs potentiels des deux cibles protéiques. / Human malaria is caused by five parasitic species of the genus Plasmodium, P. falciparum being the most deadly. Drug resistance of some parasite strains has been reported for commercial drugs. Vector mosquitoes are resistant to perythroid insecticides and no successful vaccine is available. This disease is a public and economic health issue for developing countries. My PhD projects investigate new treatments for malaria, by targeting two new proteins. Apicomplexa parasites have developed a unique invasion mechanism involving a tight interaction formed between the host cell and the parasite surfaces called Moving Junction. The structural and functional characterization of the AMA1-RON2 complex pave the way for the design of low molecular weight compounds capable of disrupting the AMA1-RON2 assembly and thereby invasion. The parasite also needs phospholipids to build its membrane during the erythrocytic cycle. There are six times more phospholipids in infected erythrocytes compared to healthy ones. Our strategy is to inhibit the de novo Kennedy pathway and more precisely its rate-limiting step catalysed by the enzyme PfCCT. Filters were used for ligand-based (LBVS) and structure-based virtual screening (SBVS) of commercial chemical databases that I have prepared. For each project, molecules were selected in terms of their docking scores and their interactions with key active site residues. By combining structural bioinformatics and cheminformatics, we identified potential inhibitors of the two protein targets.
14

Novel applications for hierarchical natural move Monte Carlo simulations : from proteins to nucleic acids

Demharter, Samuel January 2016 (has links)
Biological molecules often undergo large structural changes to perform their function. Computational methods can provide a fine-grained description at the atomistic scale. Without sufficient approximations to accelerate the simulations, however, the time-scale on which functional motions often occur is out of reach for many traditional methods. Natural Move Monte Carlo belongs to a class of methods that were introduced to bridge this gap. I present three novel applications for Natural Move Monte Carlo, two on proteins and one on DNA epigenetics. In the second part of this thesis I introduce a new protocol for the testing of hypotheses regarding the functional motions of biological systems, named customised Natural Move Monte Carlo. Two different case studies are presented aimed at demonstrating the feasibility of customised Natural Move Monte Carlo.
15

Uma proposta de algoritmo memético baseado em conhecimento para o problema de predição de estruturas 3-D de proteínas

Correa, Leonardo de Lima January 2017 (has links)
Algoritmos meméticos são meta-heurísticas evolutivas voltadas intrinsecamente à exploração e incorporação de conhecimentos relacionados ao problema em estudo. Nesta dissertação, foi proposto um algoritmo memético multi populacional baseado em conhecimento para lidar com o problema de predição de estruturas tridimensionais de proteínas voltado à modelagem de estruturas livres de similaridades conformacionais com estruturas de proteínas determinadas experimentalmente. O algoritmo em questão, foi estruturado em duas etapas principais de processamento: (i) amostragem e inicialização de soluções; e (ii) otimização dos modelos estruturais provenientes da etapa anterior. A etapa I objetiva a geração e classificação de diversas soluções, a partir da estratégia Lista de Probabilidades Angulares, buscando a definição de diferentes grupos estruturais e a criação de melhores estruturas a serem incorporadas à meta-heurística como soluções iniciais das multi populações. A segunda etapa consiste no processo de otimização das estruturas oriundas da etapa I, realizado por meio da aplicação do algoritmo memético de otimização, o qual é fundamentado na organização da população de indivíduos em uma estrutura em árvore, onde cada nodo pode ser interpretado como uma subpopulação independente, que ao longo do processo interage com outros nodos por meio de operações de busca global voltadas a características do problema, visando o compartilhamento de informações, a diversificação da população de indivíduos, e a exploração mais eficaz do espaço de busca multimodal do problema O algoritmo engloba ainda uma implementação do algoritmo colônia artificial de abelhas, com o propósito de ser utilizado como uma técnica de busca local a ser aplicada em cada nodo da árvore. O algoritmo proposto foi testado em um conjunto de 24 sequências de aminoácidos, assim como comparado a dois métodos de referência na área de predição de estruturas tridimensionais de proteínas, Rosetta e QUARK. Os resultados obtidos mostraram a capacidade do método em predizer estruturas tridimensionais de proteínas com conformações similares a estruturas determinadas experimentalmente, em termos das métricas de avaliação estrutural Root-Mean-Square Deviation e Global Distance Total Score Test. Verificou-se que o algoritmo desenvolvido também foi capaz de atingir resultados comparáveis ao Rosetta e ao QUARK, sendo que em alguns casos, os superou. Corroborando assim, a eficácia do método. / Memetic algorithms are evolutionary metaheuristics intrinsically concerned with the exploiting and incorporation of all available knowledge about the problem under study. In this dissertation, we present a knowledge-based memetic algorithm to tackle the threedimensional protein structure prediction problem without the explicit use of template experimentally determined structures. The algorithm was divided into two main steps of processing: (i) sampling and initialization of the algorithm solutions; and (ii) optimization of the structural models from the previous stage. The first step aims to generate and classify several structural models for a determined target protein, by the use of the strategy Angle Probability List, aiming the definition of different structural groups and the creation of better structures to initialize the initial individuals of the memetic algorithm. The Angle Probability List takes advantage of structural knowledge stored in the Protein Data Bank in order to reduce the complexity of the conformational search space. The second step of the method consists in the optimization process of the structures generated in the first stage, through the applying of the proposed memetic algorithm, which uses a tree-structured population, where each node can be seen as an independent subpopulation that interacts with others, over global search operations, aiming at information sharing, population diversity, and better exploration of the multimodal search space of the problem The method also encompasses ad-hoc global search operators, whose objective is to increase the exploration capacity of the method turning to the characteristics of the protein structure prediction problem, combined with the Artificial Bee Colony algorithm to be used as a local search technique applied to each node of the tree. The proposed algorithm was tested on a set of 24 amino acid sequences, as well as compared with two reference methods in the protein structure prediction area, Rosetta and QUARK. The results show the ability of the method to predict three-dimensional protein structures with similar foldings to the experimentally determined protein structures, regarding the structural metrics Root-Mean-Square Deviation and Global Distance Total Score Test. We also show that our method was able to reach comparable results to Rosetta and QUARK, and in some cases, it outperformed them, corroborating the effectiveness of our proposal.
16

Análise por ferramentas de bioinformática da proteína não-estrutural 5A do vírus da hepatite C genótipo 1 e 3 em amostras pré-tratamento /

Yamasaki, Lílian Hiromi Tomonari. January 2010 (has links)
Resumo: A infecção pelo vírus da Hepatite C (HCV) é considerada um grande problema de saúde pública, desde a sua descoberta em 1989. Entretanto a terapia mais utilizada atualmente, baseada no uso de Peginterferon, tem sucesso em aproximadamente 50% dos pacientes com o genótipo 1. Embora os mecanismos envolvidos nesta resistência viral ainda não sejam esclarecidos, sugere-se que fatores virais e do hospedeiro participam deste. A proteína não-estrutural 5A (NS5A) está envolvida em diversos processos celulares e é um componente essencial para o HCV. Entretanto, sua estrutura e função ainda não foram bem elucidadas. A partir destes fatos, os objetivos do presente estudo foram elaborar um modelo teórico da NS5A e investigar as propriedades estruturais e funcionais in silico. Foram analisadas 345 sequências da proteína NS5A do HCV de 23 pacientes infectados com o genótipo 1 ou 3. As composições de aminoácidos e de estrutura secundária demonstraram que há diferença entre os genótipos, podendo indicar que há diferenças nas interações proteína-proteína entre os genótipos, o que pode estar relacionado com a diferença da taxa de resistência ao tratamento. A análise funcional foi realizada com o ProtFun, que sugeriu que a NS5A estaria envolvida nas funções celulares de metabolismo intermediário central, tradução, crescimento, tranporte, ligação e hormônio. Estas funções variaram entre os domínios, suportando a hipótese de que a NS5A é uma proteína multifuncional. A análise pelo PROSITE indicou vários sítios de glicosilação, fosforilação e miristoilação, que são altamente conservados e podem ter função importante na estabilização da estrutura e função, sendo assim possíveis alvos de novos antivirais. Alguns deles estão em regiões relacionadas com a resposta ao tratamento. Outro... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Hepatitis C virus (HCV) infects almost 3% of people worldwide and it is considered the main cause of liver chronic diseases and transplants. Until today, there is no effective vaccine and the current most used therapy, based on Peginterferon, is successful only in 50% of patients infected by genotype 1. Although the outcomes of this treatment resistance are unclear, it is suggested host and virus factors may participate in this mechanism. Non-structural 5A (NS5A) protein is involved in several cellular and virus processes and it is a critical component of HCV. However, its structure and function are still uncertain. Regarding these facts, the present study attachments were to elaborate a model of the NS5A protein and to investigate NS5A structural and functional features, using in silico tools. It was analyzed 345 sequences of HCV NS5A protein from 23 patients infected by genotypes 1 or 3. Residues and secondary structure composition of all sequences demonstrated that there are differences between genotypes. It may indicate that there are differences in interactions between genotypes, which could be related with the distinct average of treatment resistance. In addition, among those that varied between genotypes, there were amino acids in regions that studies suggested as related with virus persistence. Functional analysis was performed with ProtFun. It suggested that NS5A is involved with central intermediary metabolism, translation, growth, transport, ligation and hormone functions in the cell. These functions vary between the domains, strengthening the hypothesis that NS5A is a multifunctional protein. Prosite motif search indicated that there are many glicosilation, fosforilation and myristoilation sites, which are highly conserved and may play an important role in structural stabilization and... (Complete abstract click electronic access below) / Orientador: Paula Rahal / Coorientador: Helen Andrade Arcuri / Banca: Fernanda Canduri / Banca: Carlos Alberto Montanari / Mestre
17

Uma proposta de algoritmo memético baseado em conhecimento para o problema de predição de estruturas 3-D de proteínas

Correa, Leonardo de Lima January 2017 (has links)
Algoritmos meméticos são meta-heurísticas evolutivas voltadas intrinsecamente à exploração e incorporação de conhecimentos relacionados ao problema em estudo. Nesta dissertação, foi proposto um algoritmo memético multi populacional baseado em conhecimento para lidar com o problema de predição de estruturas tridimensionais de proteínas voltado à modelagem de estruturas livres de similaridades conformacionais com estruturas de proteínas determinadas experimentalmente. O algoritmo em questão, foi estruturado em duas etapas principais de processamento: (i) amostragem e inicialização de soluções; e (ii) otimização dos modelos estruturais provenientes da etapa anterior. A etapa I objetiva a geração e classificação de diversas soluções, a partir da estratégia Lista de Probabilidades Angulares, buscando a definição de diferentes grupos estruturais e a criação de melhores estruturas a serem incorporadas à meta-heurística como soluções iniciais das multi populações. A segunda etapa consiste no processo de otimização das estruturas oriundas da etapa I, realizado por meio da aplicação do algoritmo memético de otimização, o qual é fundamentado na organização da população de indivíduos em uma estrutura em árvore, onde cada nodo pode ser interpretado como uma subpopulação independente, que ao longo do processo interage com outros nodos por meio de operações de busca global voltadas a características do problema, visando o compartilhamento de informações, a diversificação da população de indivíduos, e a exploração mais eficaz do espaço de busca multimodal do problema O algoritmo engloba ainda uma implementação do algoritmo colônia artificial de abelhas, com o propósito de ser utilizado como uma técnica de busca local a ser aplicada em cada nodo da árvore. O algoritmo proposto foi testado em um conjunto de 24 sequências de aminoácidos, assim como comparado a dois métodos de referência na área de predição de estruturas tridimensionais de proteínas, Rosetta e QUARK. Os resultados obtidos mostraram a capacidade do método em predizer estruturas tridimensionais de proteínas com conformações similares a estruturas determinadas experimentalmente, em termos das métricas de avaliação estrutural Root-Mean-Square Deviation e Global Distance Total Score Test. Verificou-se que o algoritmo desenvolvido também foi capaz de atingir resultados comparáveis ao Rosetta e ao QUARK, sendo que em alguns casos, os superou. Corroborando assim, a eficácia do método. / Memetic algorithms are evolutionary metaheuristics intrinsically concerned with the exploiting and incorporation of all available knowledge about the problem under study. In this dissertation, we present a knowledge-based memetic algorithm to tackle the threedimensional protein structure prediction problem without the explicit use of template experimentally determined structures. The algorithm was divided into two main steps of processing: (i) sampling and initialization of the algorithm solutions; and (ii) optimization of the structural models from the previous stage. The first step aims to generate and classify several structural models for a determined target protein, by the use of the strategy Angle Probability List, aiming the definition of different structural groups and the creation of better structures to initialize the initial individuals of the memetic algorithm. The Angle Probability List takes advantage of structural knowledge stored in the Protein Data Bank in order to reduce the complexity of the conformational search space. The second step of the method consists in the optimization process of the structures generated in the first stage, through the applying of the proposed memetic algorithm, which uses a tree-structured population, where each node can be seen as an independent subpopulation that interacts with others, over global search operations, aiming at information sharing, population diversity, and better exploration of the multimodal search space of the problem The method also encompasses ad-hoc global search operators, whose objective is to increase the exploration capacity of the method turning to the characteristics of the protein structure prediction problem, combined with the Artificial Bee Colony algorithm to be used as a local search technique applied to each node of the tree. The proposed algorithm was tested on a set of 24 amino acid sequences, as well as compared with two reference methods in the protein structure prediction area, Rosetta and QUARK. The results show the ability of the method to predict three-dimensional protein structures with similar foldings to the experimentally determined protein structures, regarding the structural metrics Root-Mean-Square Deviation and Global Distance Total Score Test. We also show that our method was able to reach comparable results to Rosetta and QUARK, and in some cases, it outperformed them, corroborating the effectiveness of our proposal.
18

Structural bioinformatics analysis of the Hsp40 and Hsp70 molecular chaperones from humans

Adeyemi, Samson Adebowale January 2014 (has links)
HSP70 is one of the most important families of molecular chaperone that regulate the folding and transport of client proteins in an ATP dependent manner. The ATPase activity of HSP70 is stimulated through an interaction with its family of HSP40 co-chaperones. There is evidence to suggest that specific partnerships occur between the different HSP40 and HSP70 isoforms. While some of the residues involved in the interaction are known, many of the residues governing the specificity of HSP40-HSP70 partnerships are not precisely defined. It is not currently possible to predict which HSP40 and HSP70 isoforms will interact. We attempted to use bioinformatics to identify residues involved in the specificity of the interaction between the J domain from HSP40 and the ATPase domain from the HSP70 isoforms from humans. A total of 49 HSP40 and 13 HSP70 sequences from humans were retrieved and used for subsequent analyses. The HSP40 J domains and HSP70 ATPase domains were extracted using python scripts and classified according to the subcellular localization of the proteins using localization prediction programs. Motif analysis was carried out using the full length HSP40 proteins and Multiple Sequence Alignment (MSA) was performed to identify conserved residues that may contribute to the J domain – ATPase domain interactions. Phylogenetic inference of the proteins was also performed in order to study their evolutionary relationship. Homology models of the J domains and ATPase domains were generated. The corresponding models were docked using HADDOCK server in order to analyze possible putative interactions between the partner proteins using the Protein Interactions Calculator (PIC). The level of residue conservation was found to be higher in Type I and II HSP40 than in Type III J proteins. While highly conserved residues on helixes II and III could play critical roles in J domain interactions with corresponding HSP70s, conserved residues on helixes I and IV seemed to be significant in keeping the J domain in its right orientation for functional interactions with HSP70s. Our results also showed that helixes II and III formed the interaction interface for binding to HSP70 ATPase domain as well as the linker residues. Finally, data based docking procedures, such as applied in this study, could be an effective method to investigate protein-protein interactions complex of biomolecules.
19

Computational approaches toward protein design / Approches computationnelles pour le design de protéines

Traore, Seydou 23 October 2014 (has links)
Le Design computationnel de protéines, en anglais « Computational Protein Design » (CPD), est un champ derecherche récent qui vise à fournir des outils de prédiction pour compléter l'ingénierie des protéines. En effet,outre la compréhension théorique des propriétés physico-chimiques fondamentales et fonctionnelles desprotéines, l’ingénierie des protéines a d’importantes applications dans un large éventail de domaines, y comprisdans la biomédecine, la biotechnologie, la nanobiotechnologie et la conception de composés respectueux del’environnement. Le CPD cherche ainsi à accélérer le design de protéines dotées des propriétés désirées enpermettant le traitement d’espaces de séquences de large taille tout en limitant les coûts financier et humain auniveau expérimental.Pour atteindre cet objectif, le CPD requière trois ingrédients conçus de manière appropriée: 1) une modélisationréaliste du système à remodeler; 2) une définition précise des fonctions objectives permettant de caractériser lafonction biochimique ou la propriété physico-chimique cible; 3) et enfin des méthodes d'optimisation efficacespour gérer de grandes tailles de combinatoire.Dans cette thèse, nous avons abordé le CPD avec une attention particulière portée sur l’optimisationcombinatoire. Dans une première série d'études, nous avons appliqué pour la première fois les méthodesd'optimisation de réseaux de fonctions de coût à la résolution de problèmes de CPD. Nous avons constaté qu’encomparaison des autres méthodes existantes, nos approches apportent une accélération du temps de calcul parplusieurs ordres de grandeur sur un large éventail de cas réels de CPD comprenant le design de la stabilité deprotéines ainsi que de complexes protéine-protéine et protéine-ligand. Un critère pour définir l'espace demutations des résidus a également été introduit afin de biaiser les séquences vers celles attendues par uneévolution naturelle en prenant en compte des propriétés structurales des acides aminés. Les méthodesdéveloppées ont été intégrées dans un logiciel dédié au CPD afin de les rendre plus facilement accessibles à lacommunauté scientifique. / Computational Protein Design (CPD) is a very young research field which aims at providing predictive tools to complementprotein engineering. Indeed, in addition to the theoretical understanding of fundamental properties and function of proteins,protein engineering has important applications in a broad range of fields, including biomedical applications, biotechnology,nanobiotechnology and the design of green reagents. CPD seeks at accelerating the design of proteins with wanted propertiesby enabling the exploration of larger sequence space while limiting the financial and human costs at experimental level.To succeed this endeavor, CPD requires three ingredients to be appropriately conceived: 1) a realistic modeling of the designsystem; 2) an accurate definition of objective functions for the target biochemical function or physico-chemical property; 3)and finally an efficient optimization framework to handle large combinatorial sizes.In this thesis, we addressed CPD problems with a special focus on combinatorial optimization. In a first series of studies, weapplied for the first time the Cost Function Network optimization framework to solve CPD problems and found that incomparison to other existing methods, it brings several orders of magnitude speedup on a wide range of real CPD instancesthat include the stability design of proteins, protein-protein and protein-ligand complexes. A tailored criterion to define themutation space of residues was also introduced in order to constrain output sequences to those expected by natural evolutionthrough the integration of some structural properties of amino acids in the protein environment. The developed methods werefinally integrated into a CPD-dedicated software in order to facilitate its accessibility to the scientific community.
20

Algoritmy pro detekci vazebních míst u protein-ligand interakcí / Algorithms for protein-ligand binding site discovery

Krivák, Radoslav January 2013 (has links)
Virtually all processes in living organisms are conducted by proteins. Proteins perform their function by binding to other proteins (protein-protein interactions) or small molecules - so called ligands (protein-ligand interactions). Active sites for protein-ligand interactions are pockets in protein structure where ligand can bind. Predicting of ligand binding sites is the first step to study and predict protein functions and structure based drug-design. In this thesis we reviewed current approaches for binding site prediction and proposed our own improvement. We have developed a novel pocket ranking function based on prediction model that predicts ligandability (ability to bind a ligand) of a given point inside of a pocket. Prediction is done considering only a local physicochemical and geometric properties derived from neighbourhood.

Page generated in 0.0996 seconds