• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stormwater Treatment by Two Retrofit Infiltration Practices

DeBusk, Kathy Marie 13 June 2008 (has links)
Increases in impervious surfaces associated with urbanization change stream hydrology by increasing peak flow rates, storm-flow volumes and flood frequency, and degrade water quality through increases in sediment, nutrient, and bacteria concentrations. In response to water quality and quantity issues within the Stroubles Creek watershed, the Town of Blacksburg and Virginia Tech designed and constructed two innovative stormwater best management practices (BMPs). The goal of this project was to evaluate the effectiveness of a bioretention cell and a CU-Structural Soil™ infiltration trench. BMP construction was completed in July 2007. Twenty-nine precipitation events were monitored over a period of five months between October 2007 and March 2008. For each storm, inflow and outflow composite samples were collected for each BMP and analyzed for suspended sediment, total nitrogen, total phosphorus, fecal coliform bacteria and E-coli bacteria. The inflow and outflow concentrations and loads, as well as total inflow and outflow volumes and peak flow rates, were then compared to evaluate how well each BMP reduces stormwater flows, decrease peak runoff rates and improves water quality of stormwater runoff. Results for the bioretention cell indicate average reductions in stormwater quantity, sediment, total nitrogen, total phosphorus and fecal coliform bacteria that exceeded 99% by mass. The CU-Structural Soil™ infiltration trench produced reductions in stormwater quantity, total phosphorus and sediment that averaged 60%, 45% and 51%, respectively. Preliminary bacteria results indicated that both BMPs served as sources of E-coli, and the infiltration trench served as a source of fecal coliform bacteria. / Master of Science
2

Sustainable stormwater management in Stockholm's inner city / Hållbar dagvattenhantering i Stockholms innerstad

Brattgård, Nils January 2021 (has links)
Much like other cities Stockholm has traditionally used a technical system for managing stormwater. With time this system has become overburdened and has led to large environmental concerns. To reach water quality goals set by the EU Stockholm needs to decrease pollution released to recipients by 70-80%.  Green infrastructure (GI) has increasingly been used as an alternative and addition to technical stormwater systems. Many studies have been conducted on different solutions and their stormwater management performance. The City of Stockholm have done research on numerous solutions to evaluate their performance in the context of Stockholm as well. However, implementation in the inner city is slow, thus this study explores why this is the case, and how Stockholm’s stormwater management goals can be reached. Stockholm predominately uses trees planted in plant beds using structural soil, and a combination of constructed wetlands and wet ponds for stormwater management. In new developments there is no real concern, as the GI can be included in planning at an early stage. Including these solutions in existing environments causes issues related to space, both above and below ground, and costs. Therefore, other solutions need to be found. This study explored green roofs, green walls and permeable pavements as possible options. Additionally, it found that finding new space that has previously not been used for GI could be an option. To mitigate financing issues new ways of promoting investment into GI from private property owners could be utilized, but that there also is a mismatch between supposed support for sustainable stormwater management on the political side and funds allocated. Finally, the study recommends that Stockholm takes the technical systems into account and explores what GI measures best work together with it to more effectively decrease pollution.

Page generated in 0.3151 seconds