Spelling suggestions: "subject:"ctructural alerta"" "subject:"1structural alerta""
1 |
Integration of data quality, kinetics and mechanistic modelling into toxicological assessment of cosmetic ingredientsSteinmetz, Fabian January 2016 (has links)
In our modern society we are exposed to many natural and synthetic chemicals. The assessment of chemicals with regard to human safety is difficult but nevertheless of high importance. Beside clinical studies, which are restricted to potential pharmaceuticals only, most toxicity data relevant for regulatory decision-making are based on in vivo data. Due to the ban on animal testing of cosmetic ingredients in the European Union, alternative approaches, such as in vitro and in silico tests, have become more prevalent. In this thesis existing non-testing approaches (i.e. studies without additional experiments) have been extended, e.g. QSAR models, and new non-testing approaches, e.g. in vitro data supported structural alert systems, have been created. The main aspect of the thesis depends on the determination of data quality, improving modelling performance and supporting Adverse Outcome Pathways (AOPs) with definitions of structural alerts and physico-chemical properties. Furthermore, there was a clear focus on the transparency of models, i.e. approaches using algorithmic feature selection, machine learning etc. have been avoided. Furthermore structural alert systems have been written in an understandable and transparent manner. Beside the methodological aspects of this work, cosmetically relevant examples of models have been chosen, e.g. skin penetration and hepatic steatosis. Interpretations of models, as well as the possibility of adjustments and extensions, have been discussed thoroughly. As models usually do not depict reality flawlessly, consensus approaches of various non-testing approaches and in vitro tests should be used to support decision-making in the regulatory context. For example within read-across, it is feasible to use supporting information from QSAR models, docking, in vitro tests etc. By applying a variety of models, results should lead to conclusions being more usable/acceptable within toxicology. Within this thesis (and associated publications) novel methodologies on how to assess and employ statistical data quality and how to screen for potential liver toxicants have been described. Furthermore computational tools, such as models for skin permeability and dermal absorption, have been created.
|
2 |
Estratégias computacionais como métodos alternativos para avaliação da sensibilização cutânea / Computational strategies as alternative methods to chemical prediction of skin sensitizationAlves, Vinícius de Medeiros 12 May 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-12T15:19:44Z
No. of bitstreams: 2
Dissertação - Vinicius de Medeiros Alves - 2014.pdf: 3082084 bytes, checksum: da4838d5fe24841429f43de84204d98a (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-12T15:21:40Z (GMT) No. of bitstreams: 2
Dissertação - Vinicius de Medeiros Alves - 2014.pdf: 3082084 bytes, checksum: da4838d5fe24841429f43de84204d98a (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-06-12T15:21:40Z (GMT). No. of bitstreams: 2
Dissertação - Vinicius de Medeiros Alves - 2014.pdf: 3082084 bytes, checksum: da4838d5fe24841429f43de84204d98a (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-05-12 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Introduction: Skin sensitization is a major environmental and human health hazard.
Although many chemicals have been evaluated in humans, there have been no efforts to
model these data to date. Skin sensitization is commonly evaluated using structural alerts.
However, there has been a growing concern that alerts disproportionally flag too many
chemicals as toxic, which questions their reliability as toxicity markers. The main goal of this
thesis was to develop and apply new cheminformatics methods to predict skin sensitization of
chemical compounds that lack experimental data. Methodology: It has been compiled,
curated, analyzed, and compared the available human data and the murine (performed in
mice) animal model data, named LLNA (local lymph node assay). Using these data, it was
developed reliable computational models and applied them for virtual screening of chemical
libraries to identify putative skin sensitizers. It was developed a freely accessible web-based
application for the identification of potential skin sensitizers. In addition, it was demonstrated
that contrary to the common perception of QSAR models as “black boxes” they can be used to
identify statistically significant chemical substructures (QSAR-based alerts) that influence
toxicity. Results and discussion: The overall concordance between murine LLNA and human
skin sensitization responses for a set of 135 unique chemicals was low (R = 28-43%),
although several chemical classes had high concordance. We have succeeded to develop
predictive QSAR models of all available human data with the external correct classification
rate of 71%. A consensus model integrating concordant QSAR predictions and LLNA results
afforded a higher correct classification rate of 82% but at the expense of the reduced external
dataset coverage (52 %). We used the developed QSAR models for virtual screening of
CosIng database and identified 1,061 putative skin sensitizers; for seventeen of these
compounds, we found published evidence of their skin sensitization effects. The developed
Pred-Skin web app (http://www.labmol.com.br/predskin/) is based on binary QSAR models of
human (109 compounds) and LLNA (515 compounds) data with good external correct
classification rate (70-81% and 72-84%, respectively). It is also included a multiclass potency
model based on LLNA data (accuracy ranging between 73-76%). Conclusions: Models
reported herein provide more accurate alternative to LLNA testing for human skin sensitization
assessment across diverse chemical data. In addition, they can also be used to guide the
structural optimization of toxic compounds to reduce their skin sensitization potential. The
Pred-Skin web app is a fast, reliable, and user-friendly tool for early assessment of
chemically-induced skin sensitization. A new approach that synergistically integrates structural
alerts and rigorously validated QSAR models for a more transparent and accurate safety
assessment of new chemicals was also proposed. / Introdução: A sensibilização cutânea é um importante parâmetro de avaliação de toxicidade
humana e ambiental. Embora muitos compostos tenham sido avaliados em seres humanos,
não foi reportado até o momento modelos de QSAR (do inglês, quantitative structure-activity
relationships) gerados com esses dados. Comumente, a sensibilização cutânea é avaliada
computacionalmente usando-se alertas estruturais. No entanto, tem havido uma preocupação
crescente de que alertas sinalizam a maioria dos compostos como tóxicos, o que questiona
sua confiabilidade como marcadores de toxicidade. O objetivo geral do presente trabalho foi
desenvolver e aplicar novos métodos de quimioinformática para predizer a sensibilização
cutânea de compostos químicos que carecem de dados experimentais. Metodologia: Foram
compilados, preparados, analisados e comparados os dados de sensibilização cutânea de pele
humana e do modelo animal murino (realizado em camundongos), denominado LLNA (local
lymph node assay). Modelos de QSAR foram desenvolvidos utilizando esses dados e aplicados
para a triagem de quimiotecas virtuais para identificar potenciais sensibilizadores. Foi
desenvolvido um aplicativo gratuito para a identificação de potenciais sensibilizadores
cutâneos. Além disso, foi demonstrado que modelos de QSAR podem ser usados para
identificar subestruturas químicas estatisticamente significativas (alertas estruturais baseados
em QSAR) que influenciam a toxicidade. Resultados e discussão: A concordância global (R)
entre respostas de sensibilização cutânea humana e murina para um conjunto de 135
substâncias químicas únicas foi baixa (R = 28-43%), embora várias classes químicas
apresentassem alta concordância. Foi possível desenvolver modelos de QSAR preditivos com
taxa de classificação correta externa de 71%. Um modelo de consenso que integrava
predições concordantes de QSAR e dados de LLNA proporcionaram uma acurácia 82%.
Utilizou-se os modelos de QSAR desenvolvidos para a triagem virtual da base de dados
CosIng e foram identificados 1061 potenciais sensibilizadores cutâneos. Para dezessete desses
compostos, encontrou-se evidências publicadas de seus efeitos de sensibilização cutânea em
seres humanos. O aplicativo desenvolvido, Pred-Skin (http://www.labmol.com.br/predskin/),
baseia-se em modelos de QSAR classificatórios de dados humanos (109 compostos) e murinos
(515 compostos) com boa taxa de classificação correta externa (70-81% e 72-84%,
respectivamente). Esse aplicativo também possui um modelo de multiclassificatório
desenvolvido com dados de LLNA (precisão que varia entre 73-76%). Conclusões: Os
modelos de QSAR desenvolvidos forneceram uma alternativa mais precisa do que o modelo
animal para avaliação da sensibilização cutânea humana. Além disso, a interpretação dos
modelos de QSAR permitem orientar a otimização estrutural de compostos tóxicos para
reduzir o potencial de toxicidade. O aplicativo Pred-Skin é uma ferramenta rápida, confiável e
de fácil utilização para a avaliação da sensibilização cutânea de compostos químicos. Foi
também proposta uma nova abordagem que integra sinergicamente alertas estruturais e
modelos de QSAR rigorosamente validados para uma avaliação de toxicidade mais
transparente e precisa de novos produtos químicos.
|
Page generated in 0.0678 seconds