Spelling suggestions: "subject:"ctructural control engineering"" "subject:"1structural control engineering""
1 |
Active control of floor vibrations /Hanagan, Linda M. January 1994 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 146-151). Also available via the Internet.
|
2 |
Response improvement by using active control of an earthquake excited building/Işık, Onur. Turan, Gürsoy January 2004 (has links)
Thesis (Master)--İzmir Institute of Technology, İzmir, 2004.
|
3 |
Active damage control using artificial intelligence : initial studies into identification and mitigation /Kiel, David H., January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaves 97-100). Also available via the Internet.
|
4 |
Implementation and modeling of beam structures with self-sensing piezoelectric actuators.January 2001 (has links)
Wong Kwok Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 88-93). / Abstracts in English and Chinese. / LIST OF FIGURES --- p.VI / LIST OF TABLES --- p.IX / ACKNOWLEDGEMENTS --- p.X / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Literature review on self-sensing purely active system --- p.3 / Chapter 1.3 --- Literature review on active constrained layer treatment --- p.5 / Chapter 1.4 --- Introduction to enhanced active constrained layer treatment --- p.8 / Chapter 1.5 --- Objectives of this research --- p.10 / Chapter 1.6 --- Thesis outline --- p.11 / Chapter CHAPTER 2 --- CONTROL LAW IMPLEMENTATION --- p.12 / Chapter 2.1 --- Electrical equivalent model of piezoelectric material --- p.12 / Chapter 2.2 --- Bridge circuit --- p.14 / Chapter 2.2.1 --- Strain rate sensing bridge circuit --- p.14 / Chapter 2.2.2 --- Strain sensing bridge circuit --- p.17 / Chapter 2.3 --- Control laws implementation --- p.19 / Chapter 2.3.1 --- Strain rate feedback control --- p.19 / Chapter 2.3.2 --- Positive position feedback (PPF) control --- p.21 / Chapter 2.3.3 --- Modified strain rate feedback control --- p.25 / Chapter CHAPTER 3 --- EXPERIMENTAL STUDIES --- p.28 / Chapter 3.1 --- Experimental setup --- p.28 / Chapter 3.2 --- Test of actuating ability --- p.30 / Chapter 3.3 --- Test of sensing ability --- p.32 / Chapter 3.4 --- Open loop response --- p.34 / Chapter 3.5 --- Closed loop response --- p.36 / Chapter 3.6 --- Chapter summary --- p.52 / Chapter CHAPTER 4 --- SYSTEM MODELING AND SIMULATION --- p.53 / Chapter 4.1 --- Literature review on finite element method --- p.53 / Chapter 4.1.1 --- Element stiffness matrix through potential energy --- p.57 / Chapter 4.1.2 --- Element mass matrix through kinetic energy --- p.58 / Chapter 4.2 --- System modeling --- p.59 / Chapter 4.2.1 --- Stiffness and mass matrices of beam layer --- p.63 / Chapter 4.2.2 --- Stiffness and mass matrices of piezoelectric layer --- p.64 / Chapter 4.2.3 --- Stiffness and mass matrices of VEM layer --- p.67 / Chapter 4.2.4 --- Stiffness and mass matrices of beam edge elements --- p.71 / Chapter 4.3 --- Simulation --- p.76 / Chapter 4.4 --- Chapter summary --- p.83 / Chapter CHAPTER 5 --- SUMMARY AND FUTURE WORK --- p.84 / Chapter 5.1 --- Summary --- p.84 / Chapter 5.2 --- Future Work --- p.87 / BIBLIOGRAPHY --- p.88
|
5 |
Experimental studies on particle damping technology for electronics manufacturing equipment.January 2002 (has links)
Chan Kwong-wah. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 85-87). / Abstracts in English and Chinese. / LIST OF FIGURES --- p.vii / LIST OF TABLES --- p.xi / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.1.1 --- Vibration Control --- p.1 / Chapter 1.1.2 --- Passive Damping and Particle Damping Technology --- p.2 / Chapter 1.2 --- Literature Review --- p.4 / Chapter 1.3 --- Research Objective --- p.7 / Chapter 1.4 --- Organization of the Thesis --- p.7 / Chapter 2 --- PARTICLE DAMPING CHARACTERISTICS AND FEASIBILITY --- p.9 / Chapter 2.1 --- Particle Damping Characteristics --- p.9 / Chapter 2.1.1 --- Energy Balance in SDOF System --- p.9 / Chapter 2.1.2 --- Energy Dissipation Mechanisms in Particle Damping --- p.10 / Chapter 2.2 --- Particle Damping Feasibility --- p.15 / Chapter 2.2.1 --- Cantilever Beam Experiment with Free Vibration --- p.15 / Chapter 2.2.2 --- Effectiveness of Particle Damping --- p.17 / Chapter 3 --- A STUDY ON PACKING RATIO AND GRANULE SIZE --- p.19 / Chapter 3.1 --- Experimental Setup --- p.19 / Chapter 3.2 --- Effect of Packing Ratio --- p.23 / Chapter 3.3 --- Effect of Granule Size --- p.24 / Chapter 3.4 --- Damping Ratio Estimation --- p.25 / Chapter 3.5 --- Trends of Damping Ratio against Packing Ratio --- p.28 / Chapter 3.6 --- Trends of Damping Ratio against Granule Size --- p.32 / Chapter 3.7 --- Conclusions --- p.35 / Chapter 4 --- APPLICATION OF PARTICLE DAMPING ON BOND ARM --- p.36 / Chapter 4.1 --- Identification of Structural Vibration --- p.37 / Chapter 4.2 --- Finite Element Modeling --- p.39 / Chapter 4.2.1 --- Model of Bond Arm --- p.39 / Chapter 4.2.2 --- Material Properties --- p.40 / Chapter 4.2.3 --- Modes of Frequencies --- p.40 / Chapter 4.2.4 --- Mode Shapes of Bond Arm --- p.41 / Chapter 4.3 --- Experimental Setup and Procedure --- p.41 / Chapter 4.4 --- Design of Particle Enclosure --- p.43 / Chapter 4.5 --- System Parametric Study --- p.44 / Chapter 4.5.1 --- Effect of Granule Sizes --- p.44 / Chapter 4.5.2 --- Effect of Packing Ratios --- p.47 / Chapter 4.5.3 --- Effect of Different Materials of Particle Enclosure --- p.50 / Chapter 4.5.4 --- Effect of Structural Form of Enclosure --- p.52 / Chapter 4.5.5 --- Effect of Number of Chambers Filled --- p.53 / Chapter 4.5.6 --- Effect of Different Locations of Particle Enclosure --- p.55 / Chapter 4.6 --- Conclusions --- p.56 / Chapter 5 --- TEST AND ANALYSIS OF BOND HEAD STAND WITH PARTICLE DAMPING --- p.57 / Chapter 5.1 --- Ways of Implementation --- p.58 / Chapter 5.1.1 --- Factor of Mode Shape --- p.59 / Chapter 5.1.2 --- Stress Concentration Analysis --- p.59 / Chapter 5.2 --- Experimental Setup --- p.60 / Chapter 5.3 --- Bond Head Stand with Small Force Excitation --- p.62 / Chapter 5.3.1 --- Measurement Data --- p.62 / Chapter 5.4 --- Bond Head Stand with Large Force Excitation --- p.70 / Chapter 5.5 --- Effect of Packing Ratio at Different Frequency Ranges --- p.71 / Chapter 5.6 --- Discussions --- p.80 / Chapter 6 --- CONCLUSION --- p.82 / Chapter 6.1 --- Summary --- p.82 / Chapter 6.2 --- Future Work --- p.84 / BIBLIOGRAPHY --- p.85 / APPENDIX
|
6 |
Vibration control of structures with self-sensing piezoelectric actuators incorporating adaptive mechanisms.January 2002 (has links)
Law Wai Wing. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 64-66). / Abstracts in English and Chinese. / 摘要 --- p.i / ABSTRACT --- p.ii / ACKNOWLEDGEMENTS --- p.iii / CONTENTS --- p.iv / LIST OF FIGURES --- p.vi / LIST OF TABLES --- p.ix / Chapter 1 --- INTRODUCTION / Chapter 1.1 --- Background --- p.1 / Chapter 1.1.1 --- Piezoelectric Materials --- p.1 / Chapter 1.1.2 --- Self-sensing Actuation --- p.2 / Chapter 1.2 --- Literature Review --- p.3 / Chapter 1.3 --- Motivation --- p.5 / Chapter 1.4 --- Thesis Organization --- p.6 / Chapter 2 --- STRUCTURE MODELING AND FORMULATION / Chapter 2.1 --- Overview of Piezoelectricity --- p.7 / Chapter 2.2 --- Modeling of the Smart Structure --- p.8 / Chapter 2.2.1 --- Electromechanical Conversion --- p.8 / Chapter 2.2.2 --- Model Derivation Using Hamilton's Principle --- p.10 / Chapter 2.3 --- Discretization of Equation of Motion --- p.15 / Chapter 2.4 --- Sensing Model of the Piezoelectric Sensor --- p.20 / Chapter 2.4.1 --- Strain Sensing Model --- p.21 / Chapter 2.4.2 --- Strain Rate Sensing Model --- p.23 / Chapter 2.5 --- Model Validation --- p.25 / Chapter 3 --- CONTROL OF SMART STRUCTURE / Chapter 3.1 --- Strain Rate Feedback Control --- p.27 / Chapter 3.2 --- Positive Position Feedback Control --- p.31 / Chapter 3.3 --- Unbalanced Bridge Effect on Closed Loop Stability --- p.36 / Chapter 3.4 --- Self-Compensation of Capacitance Variation --- p.39 / Chapter 4 --- EXPERIMENTAL STUDIES / Chapter 4.1 --- Experiment Setup --- p.47 / Chapter 4.2 --- Experiment Results --- p.48 / Chapter 4.2.1 --- Open Loop Response --- p.48 / Chapter 4.2.2 --- Closed Loop Response with Balanced Bridge --- p.49 / Chapter 4.2.3 --- Closed Loop Response with Unbalanced Bridge --- p.51 / Chapter 4.2.4 --- Closed Loop Response upon Sudden Change in Bridge Parameter --- p.53 / Chapter 4.2.5 --- Closed Loop Response upon Temperature Variation --- p.57 / Chapter 4.2.6 --- Frequency Response --- p.58 / Chapter 5 --- SUMMARY / Chapter 5.1 --- Conclusion --- p.51 / Chapter 5.2 --- Future Work --- p.62 / BIBLIOGRAPHY --- p.63
|
7 |
Experimental and analytical studies of semi-active and passive structural control of buildings : a thesis presented for the degree of Doctor of Philosophy in Mechanical Engineering at the University of Canterbury, Christchurch, New Zealand /Mulligan, Kerry. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2007. / Typescript (photocopy). "26 April 2007." Includes bibliographical references (p. [183]-189). Also available via the World Wide Web.
|
8 |
Semi-active management of blast load structural response : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Mechanical Engineering in the University of Canterbury /Ewing, C. M. January 2007 (has links)
Thesis (M.E.)--University of Canterbury, 2007. / Typescript (photocopy). Includes bibliographical references (leaves 105-106). Also available via the World Wide Web.
|
9 |
On the use of modern control theory for active structural acoustic control /Saunders, William R., January 1991 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 163-170). Also available via the Internet.
|
10 |
The development of amplified vibration-absorbing isolators for tonal time-varying excitationDu Plooy, Nicolaas Francois 01 June 2005 (has links)
Vibration isolation is a procedure through which the transmission of oscillating disturbances or forces is reduced. The ideal isolator is one that will support the equipment being isolated without transmitting any dynamic forces. An isolator with infinite static stiffness and zero dynamic stiffness will achieve this goal. Although this ideal isolation cannot be obtained in practice, it can be approximated through a wide range of devices. This approximation occurs over a limited frequency band and methods of increasing this band were investigated. The goal of this thesis was to further our understanding of mechanical systems that can approximate the ideal isolator behaviour. To compare the various devices the blocked transfer dynamic stiffness was defined. This value was found to represent the isolator properties without the additional complication of the equipment being isolated as happens in traditional transmissibility methods. Three classes of devices were distinguished namely isolators, vibration-absorbing isolators (VAl) and amplified vibration-absorbing isolators (AVAI). The last two types exploit nodalisation to reduce the dynamic stiffness over a limited frequency range. The focus of this work is the broadening of the effective low stiffness bandwidth of amplified vibration-absorbing isolators by adapting system characteristics. If the excitation is tonal time-varying these devices can be used successfully. Two novel adaptive amplified vibration-absorbing isolators were introduced and studied in the time and frequency domains. The type I AVAI uses flexible reservoir walls to vary the isolation frequency. The type II device incorporates a heavy metal slug. Both devices use variable pressure air springs to change their stiffness. The use of air springs are convenient, offers low damping and can be used in an application such as a pneumatic rock drill handle to eliminate the need for a control system. Conceptual design methodologies for both damped and un-damped fixed and adaptive isolation frequency AVAls are presented. To determine the effects of tuning the equations were transformed in terms of constant frequency ratios and the variable stiffness ratio. The devices can be controlled using an optimisation approach, but care should be taken since the method could be unsuccessful in some cases. The design was then applied to a pneumatic rock drill. This application was particularly demanding because the stiffness had to be large enough for the operator to remain in control of the drill, yet low enough to offer isolation. Extensive measurements of drill vibration at a test facility found that the maximum acceleration values were 18.72 m/s2. The maximum allowed under the proposed European Union legislation is 10 m/s2 for short durations. The excitation consisted of a large tonal component and wide-band noise. The tonal component contributed ~50% of the total weighted equivalent acceleration experienced by the operator and a vibration absorbing isolator should therefore be an ideal solution. The measurements also showed that the excitation frequency is a function of the supply air pressure. By using the supply air pressure to feed the air spring the device could be made self-¬tuning. Numerical simulation showed that there is only a slight difference between using the supply pressure and forcing coincidence of the excitation and isolation frequencies. It was also found that the vibration levels could be reduced to below 10 m/s2<./sup> in some cases. / Thesis (PhD (Mechanical Engineering))--University of Pretoria, 2006. / Mechanical and Aeronautical Engineering / unrestricted
|
Page generated in 0.1133 seconds