• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of pre-existing structures on the emplacement and deformation of Late-Jurassic rift related magmatism in Newfoundland, Canada

Keefe, Emma January 2024 (has links)
The Notre Dame Bay Magmatic Province (NDBMP) comprises a suite of Late Jurassic (Tithonian), rift-related alkaline mafic intrusions in north-central Newfoundland, Canada. This field-based study focuses on the Leading Tickles area, where the gabbroic Budgell’s Harbour Stock (BHS) and radial lamprophyre dykes intrude strongly folded and faulted Ordovician back-arc volcanic and sedimentary host rocks. The primary objective was to understand how pre-existing structures influenced the emplacement and post-intrusion deformation of the NDBMP. This thesis employs a comprehensive methodology, including field mapping, thin section analysis, stereographic projections, kinematic and dynamic analysis, GIS visualization, and 3D analog modelling to analyze the interactions between pre-existing structures and the NDBMP. The results reveal that lamprophyres preferentially exploited pre-existing Paleozoic Appalachian structures associated with the Iapetus Suture Zone. Furthermore, magmatic activity weakened and deformed the host rocks, leading to the reactivation of Silurian thrust faults that deformed the lamprophyres post-intrusion. Movement along Luke’s Arm Fault Zone (LAFZ) in Leading Tickles may indicate a broader reactivation of the Iapetus Suture in northern Newfoundland during the Mesozoic. The variation in lamprophyre mineralogies and the presence of numerous radial dyke clusters suggest multiple magma sources coinciding with regional antiforms. / Thesis / Master of Science (MSc) / The Notre Dame Bay Magmatic Province (NDBMP) in north-central Newfoundland features Late Jurassic alkaline mafic intrusions linked to rifting. This study examines the Leading Tickles area, where gabbroic intrusions and lamprophyre dykes intersect older Ordovician rocks. The research explores how existing geological structures influenced the placement and deformation of these magmatic bodies. Using fieldwork, microscopic analysis, and 3D modeling, the study shows that ancient Appalachian structures guided the intrusion paths, and post-intrusion fault reactivations further deformed the rocks. The findings suggest multiple magma sources and broader regional tectonic movements during the Mesozoic.
2

From orogen to rifted passive margin formation in Brazil: Geodynamic numerical modeling considering the effects of structural inheritance and rheology / From orogen to rifted passive margin formation in Brazil: Geodynamic numerical modeling considering the effects of structural inheritance and rheology

Salazar-Mora, Claudio Alejandro 22 June 2017 (has links)
O paralelismo entre antigos cinturões colisionais e sistemas de riftes mais jovens é amplamente reconhecido e especialmente observado ao longo do Oceano Atlântico. A relação entre estruturas litosféricas herdadas e a nucleação de sistemas de riftes tem sido o foco de muitos estudos. Entretanto, a relação entre estruturas herdadas e estruturas neo-formadas (i.e. durante a extensão) e a estruturação de margens passivas conjugadas ainda é pouco entendida. Na presente tese, usamos uma versão muito eficiente do código computacional Lagrangiano- Euleriano de elementos finitos FANTOM para modelar fluxos termo-mecânicos acoplados visco-plásticos de forma a entender a geodinâmica do processo de rifteamento considerando os efeitos das estruturas tectônicas herdadas e da estrutura reológica na litosfera continental. Os modelos consideram quantias variadas de extensão e contração prévios para desenvolver a herança tectônico-estrutural, a qual é ou não reativada durante o desenvolvimento da margem passiva. Nossos resultados mostram que: 1) as primeiras reativações da cunha orogênica ocorrem seguindo zona de cisalhamento principal de escala litosférica (antiga sutura); 2) zonas de cisalhamento crustais (antigos cavalgamentos) são parcial ou totalmente reativadas dependendo da quantia de contração anterior; 3) com pouca contração anterior, os cavalgamentos thick-skin são eficientemente reativados e controlam a formação da margem passiva; 4) maiores quantias de contração prévia permitem que zonas de cisalhamento afastadas da sutura não dão reativadas e preservam a estrutura orogênica; 5) a reativação de zonas de cisalhamento compressivas dominam durante os estágios iniciais do rifteamento, enquanto que em estágios finais e de afinamento crustal, dominam estruturas neo-formadas. Nossos modelos ajudaram a explicar algumas características das margens passivas conjugadas do Espírito Santo - Kwanza no Atlântico Central Sul, e da margem passiva norueguesa no Mar do Norte. Nossos modelos também mostraram que diferenças reológicas entre a crosta superior e a crosta inferior causam um desacoplamento durante subducção e posterior educção. Este último processo, associado ao necking termal da astenosfera ascendente, é responsável por deixar lascas de crosta inferior no canal de subducção-educção no manto litosférico, como é evidenciado por antigas zonas de subdução fósseis associadas à margem conjugada Newfoundland-Iberia. Dessa forma, a remoção de crosta inferior em margens passivas conjugadas pode ocorrer muito antes do processo de rifteamento. / The parallelism between older collisional belts and younger rift systems is widely known and particularly portrayed along the Atlantic Ocean. In what follows, the relationship between lithospheric inherited structures and nucleation of rift systems has been focus of many studies. Nevertheless, it is still poorly understood how inherited tectonic and new-formed structures (i.e. during extension) affect the final architecture of rifted conjugate passive margins. In this thesis we use a modified highly efficient version of the Arbitrary Lagrangian-Eulerian finite- element code FANTOM to model thermal-mechanical coupled, plane-strain, viscous-plastic creeping flows to understand the geodynamics of the rifting process considering the effects of tectonic structural inheritance and rheology on the final architecture of rifted conjugate margins. The models consider different amounts of previous extension and contraction to produce the structural inheritance that is reactivated or not during rifting. Our results show that: 1) first reactivations occur along the lithospheric former suture zone; 2) upper crustal thick skinned basement thrusts are partially or fully reactivated depending on the amount of prior contraction and size of the orogen; 3) with a small amount of contraction, thick skinned thrusts are efficiently reactivated in extension and provide the template for rifted margin formation; 4) with larger amounts of precursor contraction, thick skinned thrusts distal to the lithospheric suture zone do not reactivate in extension; 5) reactivation of prior contractional shears dominates during the early stages of rifting, whereas during the final stage of rifted passive margin formation new-formed extensional shears dominate. Models with less precursor extension and more contraction resulted in a rifted conjugate passive margin similar to the Espírito Santo-Kwanza conjugate in the Central South Atlantic, whereas more precursor extension and less contraction, develops into margin showing similar behavior of fault reactivations in the Norwegian margin, North Atlantic. Our models also show that rheological differences between upper and lower continental crusts cause them to decouple both during subduction and subsequent eduction. The latter process, associated to thermal necking of the upwelling asthenosphere, is responsible to leave slivers of previously subducted lower continental crust within the eduction channel in the mantle lithosphere, as it is seismically evidenced under the Newfoundland-Iberia rifted conjugate margins. In what follows, lower continental crust of the former subducting plate can be removed long before depth-dependent extension during magma-poor rifted margin development.
3

From orogen to rifted passive margin formation in Brazil: Geodynamic numerical modeling considering the effects of structural inheritance and rheology / From orogen to rifted passive margin formation in Brazil: Geodynamic numerical modeling considering the effects of structural inheritance and rheology

Claudio Alejandro Salazar-Mora 22 June 2017 (has links)
O paralelismo entre antigos cinturões colisionais e sistemas de riftes mais jovens é amplamente reconhecido e especialmente observado ao longo do Oceano Atlântico. A relação entre estruturas litosféricas herdadas e a nucleação de sistemas de riftes tem sido o foco de muitos estudos. Entretanto, a relação entre estruturas herdadas e estruturas neo-formadas (i.e. durante a extensão) e a estruturação de margens passivas conjugadas ainda é pouco entendida. Na presente tese, usamos uma versão muito eficiente do código computacional Lagrangiano- Euleriano de elementos finitos FANTOM para modelar fluxos termo-mecânicos acoplados visco-plásticos de forma a entender a geodinâmica do processo de rifteamento considerando os efeitos das estruturas tectônicas herdadas e da estrutura reológica na litosfera continental. Os modelos consideram quantias variadas de extensão e contração prévios para desenvolver a herança tectônico-estrutural, a qual é ou não reativada durante o desenvolvimento da margem passiva. Nossos resultados mostram que: 1) as primeiras reativações da cunha orogênica ocorrem seguindo zona de cisalhamento principal de escala litosférica (antiga sutura); 2) zonas de cisalhamento crustais (antigos cavalgamentos) são parcial ou totalmente reativadas dependendo da quantia de contração anterior; 3) com pouca contração anterior, os cavalgamentos thick-skin são eficientemente reativados e controlam a formação da margem passiva; 4) maiores quantias de contração prévia permitem que zonas de cisalhamento afastadas da sutura não dão reativadas e preservam a estrutura orogênica; 5) a reativação de zonas de cisalhamento compressivas dominam durante os estágios iniciais do rifteamento, enquanto que em estágios finais e de afinamento crustal, dominam estruturas neo-formadas. Nossos modelos ajudaram a explicar algumas características das margens passivas conjugadas do Espírito Santo - Kwanza no Atlântico Central Sul, e da margem passiva norueguesa no Mar do Norte. Nossos modelos também mostraram que diferenças reológicas entre a crosta superior e a crosta inferior causam um desacoplamento durante subducção e posterior educção. Este último processo, associado ao necking termal da astenosfera ascendente, é responsável por deixar lascas de crosta inferior no canal de subducção-educção no manto litosférico, como é evidenciado por antigas zonas de subdução fósseis associadas à margem conjugada Newfoundland-Iberia. Dessa forma, a remoção de crosta inferior em margens passivas conjugadas pode ocorrer muito antes do processo de rifteamento. / The parallelism between older collisional belts and younger rift systems is widely known and particularly portrayed along the Atlantic Ocean. In what follows, the relationship between lithospheric inherited structures and nucleation of rift systems has been focus of many studies. Nevertheless, it is still poorly understood how inherited tectonic and new-formed structures (i.e. during extension) affect the final architecture of rifted conjugate passive margins. In this thesis we use a modified highly efficient version of the Arbitrary Lagrangian-Eulerian finite- element code FANTOM to model thermal-mechanical coupled, plane-strain, viscous-plastic creeping flows to understand the geodynamics of the rifting process considering the effects of tectonic structural inheritance and rheology on the final architecture of rifted conjugate margins. The models consider different amounts of previous extension and contraction to produce the structural inheritance that is reactivated or not during rifting. Our results show that: 1) first reactivations occur along the lithospheric former suture zone; 2) upper crustal thick skinned basement thrusts are partially or fully reactivated depending on the amount of prior contraction and size of the orogen; 3) with a small amount of contraction, thick skinned thrusts are efficiently reactivated in extension and provide the template for rifted margin formation; 4) with larger amounts of precursor contraction, thick skinned thrusts distal to the lithospheric suture zone do not reactivate in extension; 5) reactivation of prior contractional shears dominates during the early stages of rifting, whereas during the final stage of rifted passive margin formation new-formed extensional shears dominate. Models with less precursor extension and more contraction resulted in a rifted conjugate passive margin similar to the Espírito Santo-Kwanza conjugate in the Central South Atlantic, whereas more precursor extension and less contraction, develops into margin showing similar behavior of fault reactivations in the Norwegian margin, North Atlantic. Our models also show that rheological differences between upper and lower continental crusts cause them to decouple both during subduction and subsequent eduction. The latter process, associated to thermal necking of the upwelling asthenosphere, is responsible to leave slivers of previously subducted lower continental crust within the eduction channel in the mantle lithosphere, as it is seismically evidenced under the Newfoundland-Iberia rifted conjugate margins. In what follows, lower continental crust of the former subducting plate can be removed long before depth-dependent extension during magma-poor rifted margin development.
4

Localisation de la déformation et de la sismicité en domaine intraplaque : réactivation des paléo-structures crustales et lithosphériques / Localization of strain and seismicity in intraplate domain : Reactivation of crustal and lithospheric paleo-structures

Tarayoun, Alizia 05 November 2018 (has links)
La déformation actuelle et la sismicité en domaine intraplaque sont des phénomènes mal compris. En particulier le rôle de l'héritage structural sur les variations spatiales de sismicité, et donc d'aléa sismique, reste une problématique majeure à la fois académique et sociétale. Plusieurs études semblent montrer que l'adoucissement rhéologique créé lors de la formation de grandes structures tectoniques aujourd'hui héritées, est un facteur indispensable pour expliquer la localisation et la magnitude de la déformation actuelle. Cependant, la quantification de l'impact de cet l’héritage structural sur la déformation de la croûte supérieure est toujours mal contrainte voir inconnue.Ces travaux de thèse ont pour but de quantifier l'impact de l'héritage structural sur la déformation actuelle des premiers kilomètres de la croûte. Il s’articule autour de deux axes de recherche. Le premier est la mesure précise des taux de déformations dans la vallée du Saint Laurent, à l’Est du Canada, à l’aide du Global Positioning System (GPS). Cette zone présente un fort héritage structural associé au paléo-rift Iapetus (~700 Ma) et une forte densité de station GPS permettant la mesure des taux de déformation tant à l’extérieur qu’à l’intérieur de la zone d’héritage structural. Une des nouveautés de cette étude est la combinaison de stations GPS continues et de campagnes (réseau de campagne dédié, pour la première fois utilisé pour contraindre les taux de déformation dans cette zone). L’analyse des taux de déformation obtenus à l’aide du GPS a montré qu’avec des taux de déformation de 2 à 11 fois supérieurs aux régions limitrophes, la zone d’héritage structural concentre significativement la déformation de surface. La comparaison des taux de déformation GPS avec ceux prédits par les modèles de réajustement isostatique glaciaire (GIA, processus majeur actif dans la région) a mis en évidence que l’héritage structural amplifie les taux de déformation générés par le GIA d’un facteur 6 à 28.Le deuxième axe de recherche consiste à développer des modèles numériques thermo-mécaniques 2D prenant en compte l’adoucissement rhéologique associé à l’héritage structural. La quantification de l’amplification des taux de déformation de la croûte supérieure est effectuée pour différentes localisations de l'adoucissement au sein de la lithosphère. Les modèles sont d’abord réalisés pour un cas intraplaque générique, puis appliqués à la vallée du St Laurent. Une des nouveautés de cette étude est d’analyser les modèles pour une force fixée, représentative du bilan des forces agissant sur la lithosphère, et supposée être à l’équilibre avec la résistance intégrée de la lithosphère. Cela permet d’appréhender le comportement mécanique de la lithosphère pour un état non stationnaire. Pour les modèles intraplaques génériques, l’amplification des taux de déformation varie de 1 à 27 en fonction des paramètres testés (lithologie crustale, quantité de déformation héritée, géotherme et force). Ces amplifications modélisées sont en accord avec celles mesurées par le GPS ou la sismicité à grande échelle spatiale (100s km) dans l’est de l’Amérique du Nord. Les modèles numériques associés à la vallée du St Laurent intègrent l’impact de la géométrie de la zone adoucie et des variations latérales de la quantité d’adoucissement et du géotherme. Les amplifications associées vont de 1 à 11, en accord avec les amplifications GPS calculées dans cette zone. Un résultat majeur mis en évidence par cette étude est la présence d’un noyau élastique conservé dans le manteau lithosphérique supérieur malgré le fort adoucissement imposé, limitant les effets d’amplification.Nos résultats reflètent un comportement mécanique de la lithosphère et de la déformation associée, supposés long-terme (10^3 à 10^5 ans). Des travaux restent à entreprendre pour quantifier l’impact des processus transitoires pouvant être à l’origine de la réactivation des zones d’héritage structural. / Current deformation and seismicity are poorly understood phenomena in intraplate domains. In particular, the role of structural inheritance on spatial variations of seismicity, and hence seismic hazard, remains a major social and academic issue. Previous studies tend to show that rheology weakening created during the formation of large tectonic structures, currently inherited, is essential to explain the current deformation localization and magnitude. However, quantifying the structural inheritance impact on upper crustal deformation is still poorly constrained, if not unknown.The goal of this thesis is to quantify the impact of structural inheritance on present-day upper crustal deformation. It is performed through two research axes. The first one is the measure of precise strain rates in the Saint Lawrence Valley, eastern Canada, using the Global Positioning System (GPS). This region presents a strong structural inheritance related to the Iapetus paleo-rift (~700 Ma) and a dense GPS network, allowing a high resolution in the strain rate measurements both outside and inside the structural inheritance area. One of the novelties in this study is the combination of continues and campaign GPS stations (dedicated network, used for the first time to constrain strain rates in this region). GPS strain rate analysis show that structural inheritance significantly localizes the deformation, increasing 2-11 times the average surface strain rates in the structural inheritance area compared to surrounding regions. The comparison of GPS strain rates and glacial isostatic adjustment models (GIA, the main active process in the St Lawrence Valley) shows that GIA-induced strain rates are amplified inside the inheritance area about a factor of 6 to 28, whereas they are not amplified outside the inherited domain.The second research axe involves developing 2D thermo-mechanical numerical models including rheology weakening related to structural inheritance. Quantification of the upper crustal strain rate amplification is carried out following different weak zone localization in the lithosphere. Models are first produced for a generic intraplate domain and then, dedicated to the St Lawrence Valley. One of the novelties of this study is to analyze the models for a fixed net driving force (including the impact of regional and local forces) assumed to be at equilibrium with the lithospheric integrated strength. This approach allows studying the mechanical behavior of the lithosphere for a non-steady state. For a generic intraplate model, the strain rate amplification varies between 1 to 27 depending on the tested parameters (crustal strength, amount of inherited strain, geotherm and net driving force). These model amplification factors are in good agreement with observed GPS and seismic strain rates calculated on a large spatial scale (100s km) in Eastern North America. Representatives models of the St Lawrence Valley investigate the impact of the weak zone geometry and lateral variations of both the amount of weakening and the geotherm. The associated amplification range between 1-11 and is in good agreement with GPS amplifications calculated in this region. A major feature highlighted through this study is the presence of a preserved elastic core in the upper lithospheric mantle despite the high imposed weakening, limiting amplification effects.Our results reflect long-term behavior (10^3 to 10^5 yrs) of the lithosphere deformation and mechanical behavior. The next step is to include and quantify the impact of transient processes, which could be at the origin of structural inheritance reactivation.
5

Géométrie et cinématique de l’avant-pays provençal : modélisation par coupes équilibrées dans une zone à tectonique polyphasée / Geometry and kinematic of the Provence foreland : Modeling by balanced cross section in a polyphase tectonic area

Bestani, Lucie 17 February 2015 (has links)
L’architecture structurale et l’évolution du bassin d’avant-pays Pyrénéo-Alpin de Provence sont contrôlées par des failles profondes héritées du rifting de Gondwana au cours du Permo-Trias, par des variations d’épaisseur de la pile sédimentaire mésozoïque et par l'alternance d’évènements tectoniques compressifs et extensifs qui ont affecté la zone depuis la fin du Paléozoïque. La construction de deux coupes équilibrées d’échelle régionale (~150 km) montre que le style tectonique de l’avant-pays provençal est dominé par une tectonique de socle en Provence orientale et par une tectonique de couverture en Provence occidentale, associé avec du diapirisme dans les deux domaines. Les deux domaines sont couplés à l’échelle crustale et séparés par une zone d'accommodation dans la couverture: la Faille de la Moyenne Durance, dont la partie profonde est héritée du Paléozoïque. La structure actuelle de l’avant-pays Pyrénéo-Alpin de Provence correspond essentiellement à la signature de la compression Pyrénéo-Provençale Crétacé supérieur-Eocène (>90%). La part de la déformation Alpine est minime (9%). La phase d'extension Oligocène entre ces deux périodes compressives a été quantifiée à 1.7%. Les données de traces de fission sur apatite suggèrent une exhumation régionale à ~80 Ma reliée à la compression Pyrénéenne. Les chevauchements pyrénéens principaux ont joué simultanément, comme l’indiquent l’âge et la répartition des séries sédimentaires syntectoniques. / The structural architecture and evolution of the Pyrenean-Alpine foreland of Provence are controlled by deep-seated basement faults inherited from Gondwana rifting during Permo-Triassic time, by variations in the Mesozoic sedimentary pile thickness and by alternating compressive and extensive tectonic events that affected the area since the late Paleozoic. The construction of two balanced cross sections at regional scale (~150 km) shows that the structural style of the Provence foreland is dominated by thick-skinned tectonic in eastern Provence and thin-skinned tectonic in western Provence, associated with diapirism in each domain. Both domains are coupled at crustal scale and separated by an accommodation zone in the cover: the Middle Durance Fault, whose deep-seated part is inherited from the Paleozoic. The current structure of the Pyrenean-Alpine foreland of Provence mainly corresponds to the Pyrenean-Provence compression signature during Late Cretaceous to Eocene (>90%). The Alpine deformation proportion is minor (9%). The Oligocene extension phase between these two compressive periods has been quantified at 1.7%. The apatite fission track data suggests an exhumation stage around 80 Ma related to the Pyrenean compression. The main Pyrenean thrusts were synchronous, as indicated by the age and distribution of syntectonic sedimentary series.

Page generated in 0.0646 seconds