• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 41
  • 20
  • 5
  • 5
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 172
  • 172
  • 48
  • 46
  • 43
  • 43
  • 23
  • 18
  • 17
  • 17
  • 17
  • 17
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Optimal integrated multi-sensor system for full-scale structural monitoring based on advanced signal processing

Li, Xiaojing, School of Electrical Engineering & Telecommunications & School of Surveying & Spatial Information Systems, UNSW January 2006 (has links)
Modern civil structures as well as loads on them are still too complex to be accurately modeled or simulated. Therefore, structural failures and structural defects are NOT uncommon! More and more full-scale structural monitoring systems have been deployed in order to monitor how structures behave under various loading conditions. This research focuses on how to maximise benefits from such full-scale measurements by employing advanced digital signal processing techniques. This study is based on accelerometer and GPS data collected on three very different structures, namely, the steel tower in Tokyo, the long and slender suspension bridge in Hong Kong, and the tall office tower in Sydney, under a range of loading conditions, i.e., typhoon, earthquake, heavy traffic, and small scale wind. Systematic analysis of accelerometer and GPS data has demonstrated that the two sensors complement each other in monitoring the static, quasi-static and dynamic movements of the structures. It has also been confirmed that the Finite Element Model could under-estimate the natural frequencies of structures by more than 40% in some case. The effectiveness of using wavelet to de-noise GPS measurement has been demonstrated. The weakness and strengths of accelerometer and GPS have been identified and framework has been developed on how to integrate the two as well as how to optimize the integration. The three-dimensional spectral analysis framework has been developed which can track the temporal evolution of all the frequency components and effectively represents the result in the 3D spectrogram of frequency, time and magnitude. The dominant frequency can also be tracked on the 3D mesh to vividly illustrate the damping signature of the structure. The frequency domain coherent analysis based on this 3D analysis framework can further enhance the detection of common signals between sensors. The developed framework can significantly improve the visualized performance of the integrated system without increasing hardware costs. Indoor experiments have shown the excellent characteristics of the optical fibre Bragg gratings (FBGs) for deformation monitoring. Innovative and low-cost approach has been developed to measure the shift of FBG???s central wavelength. Furthermore, a schematic design has been completed to multiplex FBGs in order to enable distributed monitoring. In collaboration with the University of Sydney, the first Australian full-scale structural monitoring system of GPS and accelerometer has been deployed on the Latitude Tower in Sydney to support current and future research.
72

Response of equipment in resilient-friction base isolated structures subjected to ground motion

Lei, Kai-ming 06 May 1992 (has links)
The response of lightweight equipment in structures supported on resilient-friction-base isolators (R-FBI) subjected to harmonic ground motion and various earthquake ground motions is examined. The equipment-structure base system is modeled as a three degree-of-freedom discrete system (SDOF subsystems). An efficient semi-analytical numerical solution procedure for the determination of equipment response is presented. Parametric studies to examine the effects of subsystem frequency (isolator, structure, equipment), subsystem damping, mass ratio, friction coefficient and frequency content of the ground motion on the response of the equipment are performed. The equipment response on a fixed-base structure subjected to ground motion is also calculated. Friction type isolation devices can induce high frequency effects in the isolated structure due to the stick-slip action. These effects on equipment response are examined. The results show that the high frequency effect in the structure generated from a friction-type base isolator doesn't, in general, cause amplifications in the response. The R-FBI system appears to be an effective aseismic base isolator for protecting both the structure and sensitive internal equipment. / Graduation date: 1992
73

Flange bracing requirements for metal building systems

Bishop, Cliff Douglas 08 April 2013 (has links)
The analysis and design of bracing systems for complex frame geometries typically found in metal buildings can prove to be an arduous task given current methods. The American Institute of Steel Construction's Appendix 6 from the 2010 Specification for Structural Steel Buildings affords engineers a means for determining brace strength and stiffness requirements, but only for the most basic cases. Specifically, there are a number of aspects of metal building systems that place their designs outside the scope of AISC's Appendix 6 (Stability Bracing for Columns and Beams). Some of the aspects not considered by Appendix 6 include: the use of web-tapered members, the potential for unequally spaced or unequal stiffness bracing, combination of bracing types including panel and flange diagonal bracing, and the effects of continuity across brace points. In this research, an inelastic eigenvalue buckling procedure is developed for calculation of the ideal bracing stiffness demands in general framing systems. Additionally, the software provides a method of calculating the elastic lateral-torsional buckling load of members with generally stepped and tapered cross-sections, which satisfies an important need for rigorous design assessment. Extensive benchmarking to load-deflection simulations of geometrically imperfect systems is performed and recommendations are developed for determining the required design stiffness and strength of the bracing components based on the use of this type of computational tool.
74

Nonlinear ultrasonic guided waves for quantitative life prediction of structures with complex geometries

Autrusson, Thibaut Bernard 09 November 2009 (has links)
Material damage such as dislocations and microcracks are characteristic of early stages of fatigue. Accumulation of these nascent cracks leads to non-linear elastic response of the material. These non-linearities can be detected from harmonic generation for propagating elastic waves. The long term goal of this study is to investigate the non-linear elastic propagation in parts with complex geometry. Cellular Automata is introduced as a new simulation method, in order to develop new analysis on quadratic non-linearities. An existing linear code was progressively modified to take into account a different constitutive law. Also the boundary conditions need to be reviewed to ensure free stress with the non-linear behavior. The propagation of the longitudinal wave is investigated in detail. Numerical accuracy is validated from comparison with a closed, for both linear and non-linear code. The reflection of the non-linear P-wave gives confirmation for the correct treatment of the boundary condition. Finally the capabilities of the Cellular Automata code are underlined for reflection of Lamb waves for various boundary conditions.
75

Geometrically exact modeling and nonlinear mechanics of highly flexible structures /

Lee, Seung-Yoon, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 207-211). Also available on the Internet.
76

Geometrically exact modeling and nonlinear mechanics of highly flexible structures

Lee, Seung-Yoon, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 207-211). Also available on the Internet.
77

Use of block theory in tunnel stability analysis

Choi, Yam-ming, Kelvin., 蔡任明. January 2006 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
78

Behavior of stiffened compression flanges of trapezoidal box girder bridges

Herman, Reagan Sentelle 15 March 2011 (has links)
Not available / text
79

Frame stability considering member interaction and compatibility of warping deformations

MacPhedran, Ian James Unknown Date
No description available.
80

Energy Bounds For Some Nonstandard Problems In Partial Differential Equations

Ozer, Ozge 01 September 2005 (has links) (PDF)
This thesis is a survey of the studies of Ames,Payne and Schaefer about the partial differential equations with nonstandard auxiliary conditions / this is where the values of the solution are prescribed as a combination of initial time t=0 and at a later time t=T. The first chaper is introductory and contains some historical background of the problem,basic definitions and theorems.In Chapter 2 energy bounds and pointwise bounds for the solutions of the nonstandard hyperbolic problems have been investigated and by means of energy bound the uniqueness of solutions is examined. Similar discussions for the nonstandard parabolic problems have been presented in Chapter 3. Lastly in Chapter 4 a new continuous dependence result has been derived for the nonstandard problem.

Page generated in 0.2617 seconds