• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of Pore Structure in Plasma-Polymerized SiOCH Films for Gas Separation / Contrôle de la porosité dans les films SiOCH de polymère-plasma pour la séparation gazeuse

Lo, Chia-Hao 19 July 2010 (has links)
La synthèse d'une membrane composite formée d'une couche fine de surface de structure très réticulée et permsélective aux gaz déposée sur un substrat poreux a été étudiée comme solution pour accroître la perméabilité aux gaz tout en conservant une sélectivité importante. Une couche mince de polymère-plasma SiOCH a été retenue comme membrane de séparation gazeuse car elle possède une structure dont l'ultramicroporisté peut être contrôlée en ajustant les paramètres du procédé plasma comme la puissance, le flux de monomère et la pression de travail. Néanmoins, dans la membrane SiOCH, la taille moyenne des pores et leur distribution sont difficiles à appréhender par des techniques de caractérisation classiques, notamment proche de la surface car elle est très fine. Ce mémoire de thèse concerne le contrôle de la structure poreuse dans une couche mince de polymère-plasma SiOCH déposée sur un substrat polymère en utilisant un précurseur organosilicié. La spectroscopie d'annihilation de positron couplée à un faisceau de positron lent a été utilisée pour identifier la microstructure de couches minces SiOCH avec la profondeur. Ceci a nécessité tout d'abord l'acquisition d'une bonne connaissance de la caractérisation de l'annihilation de positron de matériaux polymères et céramiques. Des couches minces de SiOCH conformes ou superhydrophobes (SHP) ont été obtenues à deux fréquences différentes, respectivement à 13,56 MHz ou 40 kHz. Pour une couche conforme, le type de substrat, la structure chimique du précurseur et la puissance RF sont les paramètres majeurs qui influencent la structure des pores. Quand les films de SiOCH sont composées de deux couches (couche uniforme de surface et couche de transition) déposées sur un substrat poreux, l'analyse PAS met en évidence une couche de transition large et l'ensemble possède une perméabilité aux gaz élevée grâce à la porosité de surface du support. Lors de la préparation des couches minces SHP, quand la pression totale dépasse 0,6 mbar, la nucléation en phase gaz apparaît ce qui augmente la rugosité de la surface. Ceci induit des angles de contact à l'eau supérieurs à 160° et une hystérésis d'angles de contact avancée-reculée de seulement 2°. La préservation des chaînes carbonées et la microstructure sont les facteurs déterminant pour accroître l'hydrophobicité des couches minces de SiOCH. / In gas separation, the fabrication of composite membranes consisting of a permselective thin top layer with high cross-linking structures and a porous substrate has been regarded as a solution for improving gas permeability and simultaneously retaining high selectivity. A plasma-polymerized SiOCH film has been known as an appropriate gas separation membrane because it possesses a dense structure, the crosslinking degree of which could be controlled by adjusting plasma parameters such as plasma power, monomer flow rate, and system pressure. However, the pore size and distribution in SiOCH films, especially in the region of depth profile, are difficult to measure by conventional techniques because of they are very thin.This thesis is concerned with the control of pore structure in a plasma-polymerized SiOCH film on a polymeric substrate by using an organosilicon source. The positron annihilation spectroscopy (PAS) coupled to the slow positron beam technique was used to identify the microstructure of SiOCH films as a function of depth. This step required to have a good understanding of the positron annihilation characteristics of different materials such as organic, inorganic, and hybrid materials. Depending on plasma frequency adjustments, SiOCH films with a flat and a superhydrophobic (SHP) surface were fabricated at 13.56 MHz and 40 kHz, respectively. For a flat SiOCH film, substrate type, chemical structure of precursor, and RF power were the major variables that influenced the pore structure. When SiOCH films composed of two layers (bulk and transitions layers) were deposited on porous substrates, they displayed a long transition layer based on the PAS analysis and possessed a high gas permeability due to the surface porosity of the substrate. When the precursor used possessed a cyclic ring structure, an opportunity of a break-up of the cyclic ring would increase with increasing RF power and then induce formation of new big pores. For the preparation of SHP films, when the total pressure was higher than 0.6 mbar, the gas nucleation reaction was enhanced to induce roughness on SiOCH films, and it would show a high WCA of over 160o and a low WCAH of only 2 degrees. Both the hydrocarbon preservation and microstructure were the main factors in improving the surface superhydrophobicity of SiOCH films.
2

Caractérisation des changements dans les propriétés de réservoir carbonaté induits par une modification dans la structure des pores lors d'une injection de CO2 : application au stockage géologique de CO2 / Experimental characterization of the change in hydrodynamic properties induced during carbonate dissolution with water enriched in CO2

Mangane, Papa Ousmane 25 June 2013 (has links)
Le stockage géologique du CO2 est l'une des diverses technologies étant explorées afin de réduire les émissions de carbone atmosphérique des processus industriels (i.e. combustion de l'énergie fossile). L'une des spécifiques caractéristiques de l'injection du CO2 en profondeur reste la possibilité de réactions géochimiques (dissolution-précipitation) entre la saumure réactive mobile (e.g. eau de formation enrichie en CO2) et la roche encaissante durant l'évolution spatiale et temporelle du CO2, conduisant à des modifications dans la structure des pores et par conséquent dans les propriétés d'écoulement du réservoir (e.g. la perméabilité k). Donc, ces changements structuraux peuvent largement contrôler l'injectivité, ainsi que le champ de pression dans le réservoir et aussi la propagation du CO2. Il demeure ainsi crucial d'explorer les changement dans les propriétés de réservoirs (e.g. structurales et hydrodynamiques) induits durant une injection de CO2 et explicitement les relations existantes entre eux (e.g. k ou surface réactive-Sr versus porosité- , k versus hétérogénéité de la roche), afin de développer des outils de modélisation prédictive des processus de transport et réactionnels se produisant durant une injection de CO2 et d'évaluer de façon fiable les risques. Dans le cas des réservoirs carbonatés, l'application des modèles prédictifs de transport réactif demeure toujours un enjeu, car contrainte par la forte hétérogénéité en leur sein ainsi que par l'incertitude dans la cinétique de réactions des minéraux carbonatés dans ce contexte. Dans cette optique, nous avons réalisé des expériences de percolation à travers des échantillons de roches carbonatées dans les conditions thermodynamiques de stockage en profondeur (T = 100°C et P =12 MPa). L'évolution de la perméabilité est suivie au cours des expériences ; et la variation de la porosité est calculée à partir des résultats d'analyses chimiques au ICP-AES des fluides de sortie échantillonnés. L'investigation des modifications apportées à la structure des pores est réalisée par le biais de la Micro-Tomographie haute résolution à rayon X, acquise au synchrotron de Grenoble (e.g. ESRF). Dépendant du régime de dissolution, contrôlé par la fabrique de la roche réservoir et la composition chimique de la saumuré chargée en CO2 (e.g. PCO2 engagée), on a observé qu'une modification de la structure de la roche peut soit améliorer soit détériorer (résultat atypique en contexte de dissolution) la valeur de la perméabilité k. Mots clés : Stockage géologique du CO2, transport, réactions géochimiques, structure des pores, propriétés hydrodynamiques, expériences de percolation de CO2, micro-tomographie à rayon X. / Geological storage of CO2 is one of diverse technologies being explored to reduce atmospheric carbon from industrial processes (i.e. fossil fuel combustion). One of the specific features of CO2 injection is the possibility of geochemical reactions (dissolution – precipitation) between mobile reactive brine (e.g. formation water enriched in CO2) and the host rock during the spatial and temporal evolution of CO2. That leads to modifications in the pore structure which in turn change the flow dynamics of the reservoir (e.g. the permeability k). Then, theses structural modifications can largely control the injectivity, so that the pressure field in the reservoir and also the CO2 propagation. Accordingly, it is crucial to explore the changes in the reservoir properties (e.g. structural and hydrodynamic) induced during a CO2 injection and specially the relationships between them (e.g. k or reactive surface-Sr versus porosity- , k versus rock heterogeneity), for developing predictive modelling tools of the transport and reaction processes occurring during a CO2 injection and reliable risk assessment. In the case of carbonate rocks, the application of the predictive models of transport and reaction is still challenging, because of their high heterogeneity so that the incertitude in the reaction kinetics of carbonate minerals. From this perspective, we realized brine-enriched in CO2 percolation experiments through carbonate rock samples in thermodynamic conditions expected during CO2 injection in deep reservoirs (T = 100°C et P =12 MPa). The permeability changes k(t) is monitored during the experiments and the porosity variation is calculated from chemical analyses of the sampled outlet fluids, using ICP-EAS. The pore structure modifications are investigated from high resolution X ray micro tomography images acquired from the synchrotron of Grenoble (ESRF). Depending to the dissolution regime, controlled by the reservoir rock fabric and the chemical composition of the brine (e.g. PCO2), we observed that a modification of pore structure can either improve (atypical result in dissolution context) or impair the value of the permeability k. Keywords: CO2 geological storage, transport, geochemical reactions, pore structure, hydrodynamic properties, brine enriched in CO2 percolation experiments, X ray microtomography.

Page generated in 0.0817 seconds