Spelling suggestions: "subject:"sas separation membrane"" "subject:"suas separation membrane""
1 |
Novel microporous polymers for use as gas separation membranesLee, Michael James January 2016 (has links)
Polymers of Intrinsic Microporosity (PIMs) combine the desirable processability of polymers with a significant degree of microporosity generated from the inefficient packing of their rigid and contorted structures. They are attracting attention for a variety of applications including as membrane materials for gas separations. Over the last 30 years, membranes have become an established technology for separating gases and are likely to play key role in reducing the environmental impact and costs of many industrial processes such as O2 or N2 enrichment from air, natural gas upgrading and hydrogen recovery from ammonia production. This thesis describes the synthesis of a series of novel PIMs, primarily PIM-polyimide structures (PIM-PI) and investigates their potential in such applications. In particular, it focuses on the design and synthesis of solution processable PIMs in order to study how structural differences affect the gas permeability. The first section describes the synthesis of a variety of PIM-PIs using large bulky diamines derived from spirobisindane (SBI) and biphenylfluorene (BPF) structures which are useful monomers for achieving high BET (Brunauer-Emmett- Teller) surface areas (> 650 m2 g-1). The second section describes a whole series PIs based on novel and literature based Tröger’s base (TB) diamine monomers. Most of these exhibited good solubility, excellent thermal stability and intrinsic microporosity, with apparent BET surface areas in the range 450-739 m2 g-1. Notably, a polyimide derived from Me2TB and pyromellitic anhydride demonstrates gas permeability data above the 2008 upper bounds for important gas pairs such as O2/N2, H2/N2 and H2/CH4. The third section aims to enforce rigidity within the polymers further by incorporating differently substituted monomers based on rigid ethanoanthracene (EA) units. This includes the formation of a novel EA-EA based PI with an exceptionally rigid polymeric structure, possessing a BET surface area of 694 m2 g-1. In addition to very high permeability, this polymer demonstrates improved gas selectivity due to its enhanced performance as a molecular sieve, placing it amongst some of the highest performing polymers to date. The final section looks at other ways in which rigidity can be enforced including the formation of TB-polymers and thermally rearranged (TR) polymers and assesses their potential for future investigations.
|
2 |
Synthesis and Characterization of High Performance Polymers for Gas Separation MembranesBorjigin, Hailun 20 July 2015 (has links)
This dissertation focuses on the synthesis and characterization of high performance polymers, especially polyimides, polybenzoxazoles and polybenzimidazoles for gas separation applications. An abundance of monomers and novel polymers were synthesized and fabricated into membranes.
Thermally rearranged polybenzoxazoles and their precursor polyimides were systematically studied with regard to size of pendant functional groups, thermal rearrangement conversion, and relationship of backbone structure/gas transport properties. 3,3'-Diamino-4,4'-dihydroxybiphenyl was synthesized using an economical route. Meta and para oriented polyimides with different ortho-functionality were synthesized and these polymers were thermally rearranged into polybenzoxazoles. The polar hydroxyl functional groups on the polyimide backbone diminished the meta/para isomer effect of the permeability coefficients of the polymers and only a small difference between meta- and para-oriented polyhydroxyimides in permeability coefficients was observed. The TR polybenzoxazoles derived from meta/para-oriented isomeric polyimides with ortho functionality had similar gas separation properties, especially for CO2/CH4 separation, and it is hypothesized that this is due to a lack of intersegmental mobility distinction between the two isomeric TR polymers. The TR polymers derived from the polyimides with acetate ortho-functional groups had significantly better gas separation properties than ones derived from the precursor with hydroxyl ortho-functional groups.
Polybenzimidazoles were also investigated for use as gas separation membranes. Polybenzimidazoles are some of the most thermally stable polymers. However, commercial polybenzimidazoles do not have good solubility in common solvents. The solubility issue was solved by incorporating sulfonyl linkages into the polybenzimidazole backbone using a 3,3',4,4'-tetraaminodiphenylsulfone (TADPS) monomer. 3,3',4,4'-Tetraaminodiphenylsulfone was synthesized by a novel route with higher overall yield and less steps than the traditional synthetic method. The TADPS based polybenzimidazoles also demonstrated better thermal stability than commercial polybenzimidazole. The meta/para oriented isomer effect on gas transport properties is discussed. TADPS-based polybenzimidazoles exhibited H2/CO2 gas separation properties near or surpassing the upper bound with H2 permeabilities from 3.6 to 5.7 Barrer and selectivities from 10.1 to 32.2 at 35 °C. / Ph. D.
|
3 |
The Effect of Surfactant and Compatibilizer on Inorganic Loading and Properties of PPO-based EPMM MembranesBissadi, Golnaz 07 December 2012 (has links)
Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS).
The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique.
The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass spectrometry (ICP-MS), and gas permeation measurements carried out in a constant pressure (CP) system.
The 29Si NMR analysis verified polymerization of TEOS in the emulsions made of pure TCE, and the PPO solution in TCE. The conversions of TEOS in the two-step process in the two types of emulsions were very close to each other. In the case of the one-step process, the conversions in the TCE emulsion were significantly greater than those in the emulsion of the PPO solution in TCE. Consequently, the conversions of TEOS in the EPMM membranes made in the two-step process were greater than those in the EPMM membranes made in the one-step process. The latter ranged between 10 - 20%, while the highest conversion in the two-step process was 74% in the presence of pure compatibilizer with no surfactant. Despite greater conversions and hence the greater inorganic loadings, the EPMM membranes prepared in the two-step process had glass transition temperatures (Tg) only slightly greater than the reference PPO membranes. In contrast, despite relatively low inorganic loadings, the EPMM membranes prepared in the one-step process had Tgs markedly greater than PPO, and showed the expected trend of an increase in Tg with the inorganic loading. These results indicate that in the case of the one-step process the polymerized TEOS was well integrated with the PPO chains and the interactions between the two phases lead to high Tgs. On the other hand, this was not the case for the EPMM membranes prepared in the two-step process, suggesting possible phase separation between the polymerized TEOS and the organic phase. The latter was confirmed by detecting no selectivity in the EPMM membranes prepared by the two-step process. In contrast, the EPMM membranes prepared in the one-step process in the presence of the compatibilizer and no surfactant showed 50% greater O2 permeability coefficient and a slightly greater O2/N2 permeability ratio compared to the reference PPO membranes.
|
4 |
The Effect of Surfactant and Compatibilizer on Inorganic Loading and Properties of PPO-based EPMM MembranesBissadi, Golnaz 07 December 2012 (has links)
Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS).
The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique.
The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass spectrometry (ICP-MS), and gas permeation measurements carried out in a constant pressure (CP) system.
The 29Si NMR analysis verified polymerization of TEOS in the emulsions made of pure TCE, and the PPO solution in TCE. The conversions of TEOS in the two-step process in the two types of emulsions were very close to each other. In the case of the one-step process, the conversions in the TCE emulsion were significantly greater than those in the emulsion of the PPO solution in TCE. Consequently, the conversions of TEOS in the EPMM membranes made in the two-step process were greater than those in the EPMM membranes made in the one-step process. The latter ranged between 10 - 20%, while the highest conversion in the two-step process was 74% in the presence of pure compatibilizer with no surfactant. Despite greater conversions and hence the greater inorganic loadings, the EPMM membranes prepared in the two-step process had glass transition temperatures (Tg) only slightly greater than the reference PPO membranes. In contrast, despite relatively low inorganic loadings, the EPMM membranes prepared in the one-step process had Tgs markedly greater than PPO, and showed the expected trend of an increase in Tg with the inorganic loading. These results indicate that in the case of the one-step process the polymerized TEOS was well integrated with the PPO chains and the interactions between the two phases lead to high Tgs. On the other hand, this was not the case for the EPMM membranes prepared in the two-step process, suggesting possible phase separation between the polymerized TEOS and the organic phase. The latter was confirmed by detecting no selectivity in the EPMM membranes prepared by the two-step process. In contrast, the EPMM membranes prepared in the one-step process in the presence of the compatibilizer and no surfactant showed 50% greater O2 permeability coefficient and a slightly greater O2/N2 permeability ratio compared to the reference PPO membranes.
|
5 |
The Effect of Surfactant and Compatibilizer on Inorganic Loading and Properties of PPO-based EPMM MembranesBissadi, Golnaz January 2012 (has links)
Hybrid membranes represent a promising alternative to the limitations of organic and inorganic materials for high productivity and selectivity gas separation membranes. In this study, the previously developed concept of emulsion-polymerized mixed matrix (EPMM) membranes was further advanced by investigating the effects of surfactant and compatibilizer on inorganic loading in poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based EPMM membranes, in which inorganic part of the membranes originated from tetraethylorthosilicate (TEOS).
The polymerization of TEOS, which consists of hydrolysis of TEOS and condensation of the hydrolyzed TEOS, was carried out as (i) one- and (ii) two-step processes. In the one-step process, the hydrolysis and condensation take place in the same environment of a weak acid provided by the aqueous solution of aluminum hydroxonitrate and sodium carbonate. In the two-step process, the hydrolysis takes place in the environment of a strong acid (solution of hydrochloric acid), whereas the condensation takes place in weak base environment obtained by adding excess of the ammonium hydroxide solution to the acidic solution of the hydrolyzed TEOS. For both one- and two-step processes, the emulsion polymerization of TEOS was carried out in two types of emulsions made of (i) pure trichloroethylene (TCE) solvent, and (ii) 10 w/v% solution of PPO in TCE, using different combinations of the compatibilizer (ethanol) and the surfactant (n-octanol). The experiments with pure TCE, which are referred to as a gravimetric powder method (GPM) allowed assessing the effect of different experimental parameters on the conversion of TEOS. The GPM tests also provided a guide for the synthesis of casting emulsions containing PPO, from which the EPMM membranes were prepared using a spin coating technique.
The synthesized EPMM membranes were characterized using 29Si nuclear magnetic resonance (29Si NMR), differential scanning calorimetry (DSC), inductively coupled plasma mass spectrometry (ICP-MS), and gas permeation measurements carried out in a constant pressure (CP) system.
The 29Si NMR analysis verified polymerization of TEOS in the emulsions made of pure TCE, and the PPO solution in TCE. The conversions of TEOS in the two-step process in the two types of emulsions were very close to each other. In the case of the one-step process, the conversions in the TCE emulsion were significantly greater than those in the emulsion of the PPO solution in TCE. Consequently, the conversions of TEOS in the EPMM membranes made in the two-step process were greater than those in the EPMM membranes made in the one-step process. The latter ranged between 10 - 20%, while the highest conversion in the two-step process was 74% in the presence of pure compatibilizer with no surfactant. Despite greater conversions and hence the greater inorganic loadings, the EPMM membranes prepared in the two-step process had glass transition temperatures (Tg) only slightly greater than the reference PPO membranes. In contrast, despite relatively low inorganic loadings, the EPMM membranes prepared in the one-step process had Tgs markedly greater than PPO, and showed the expected trend of an increase in Tg with the inorganic loading. These results indicate that in the case of the one-step process the polymerized TEOS was well integrated with the PPO chains and the interactions between the two phases lead to high Tgs. On the other hand, this was not the case for the EPMM membranes prepared in the two-step process, suggesting possible phase separation between the polymerized TEOS and the organic phase. The latter was confirmed by detecting no selectivity in the EPMM membranes prepared by the two-step process. In contrast, the EPMM membranes prepared in the one-step process in the presence of the compatibilizer and no surfactant showed 50% greater O2 permeability coefficient and a slightly greater O2/N2 permeability ratio compared to the reference PPO membranes.
|
6 |
Blending high performance polymers for improved stability in integrally skinned asymmetric gas separation membranesSchulte, Leslie January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Mary E. Rezac / Polyimide membranes have been used extensively in gas separation applications because of their attractive gas transport properties and the ease of processing these materials. Other applications of membranes, such as membrane reactors, which could compete with more traditional packed and slurry bed reactors across a wider range of environments, could benefit from improvements in the thermal and chemical stability of polymeric membranes. This work focuses on blending polyimide and polybenzimidazole polymers to improve the thermal and chemical stability of polyimide membranes while retaining the desirable characteristics of the polyimide.
Blended dense films and asymmetric membranes were fabricated and characterized. Dense film properties are useful for studying intrinsic properties of the polymer blends. Transport properties of dense films were characterized from room temperature to 200°C. Properties including miscibility, density, chain packing and thermal stability were investigated. A process for fabricating flat sheet blended integrally skinned asymmetric membranes by phase inversion was developed. The transport properties of membranes were characterized from room temperature to 300°C.
A critical characteristic of gas separation membranes is selectivity. Post-treatments including thermal annealing and vapor and liquid surface treatments were investigated to improve the selectivity of blended membranes. Vapor and liquid surface treatments with common, benign solvents including an alkane, an aldehyde and an alcohol resulted in improvements in selectivity.
|
7 |
Development and Characterization of Ethanol-Compatibilized PPO-Based EPMM MembranesWang, Qiang 22 August 2011 (has links)
Emulsion polymerized mixed matrix (EPMM) membranes is a new category of membranes, which incorporate silica-based inorganic nanoparticles dispersed in continuous phase of an organic polymer. The uniqueness of the EPMM membranes comes from the fact that they may combine otherwise incompatible inorganic and organic phases. This is achieved by the synthesis of the inorganic nanoparticles from a silica precursor in a stable emulsion, in which an aqueous phase is dispersed in a continuous phase of the polymer solution. More specifically, the silica precursor soluble in the polymer solution polymerizes in contact with the aqueous phase, and consequently the latter acts as finely dispersed micro reactors.
The objective of this work was to optimize the previously developed protocol for the synthesis of poly (2,6-dimethyl-1,4pheneylene oxide) (PPO) based EPMM membranes, and to characterize their physical and gas transport properties. In particular, the effects of inorganic loading and the membrane post-treatment protocol on the permeability and selectivity of the membranes were of interest. However, the results showed that the obtained permeation and separation were virtually not affected by the theoretical Si loading and the post-treatment protocol. Moreover, in comparison to the base PPO membranes, the observed O2 permeability and the O2/N2 permselectivity have generally decreased. The differential scanning calorimetry (DSC) analysis of the synthesized membranes showed an important scatter of the glass transition temperatures (Tg) of the EPMM membranes with the values generally lower than the Tg of the base PPO. Moreover, the inductively coupled plasma mass spectrometry (ICP-MS) showed the silica content in selected EPMM membranes to be far below the expected theoretical level. This, in combination with the 29Si nuclear magnetic resonance (29Si NMR) results, showed that most of the already low silica content comes from the unreacted silica source (tetraethylorthosilicate) and have led to the second phase of the project in which a modified synthesis protocol has been developed.
The major differences of the modified protocol compared to the original one include the replacement of a surfactant, 1-octanol, by ethanol and using greater concentrations of the reactants. To study the effect of different parameters involved in the synthesis protocol, a Gravimetric Powder experiment, in which the inorganic polymerization is carried out in an emulsion with a pure solvent rather than a polymer solution, has been designed. The Gravimetric Powder experiments have confirmed polymerization of tetraethylorthosilicate (TEOS) in the emulsion system. Using the conditions, which resulted in the maximum production of the polymerized TEOS in the Gravimetric Powder experiments, one set of new EPMM membranes has been synthesized and characterized.
The new EPMM membranes have the Tg of 228.2oC, which is distinctly greater compared to the base PPO, and contain one order of magnitude more of silica compared to the old EPMM membranes. More importantly, the 29Si NMR analysis has proven that the silica content in the new EPMM membranes originates from the reacted rather than unreacted TEOS. Interestingly, the observed conversion of TEOS in the new EPMM membranes, exceeding 20%, is greater than the largest conversion in the Gravimetric Powder experiments. The oxygen permeability in the new EPMM membrane of 33.8 Barrer is more than twice that of the base PPO membrane. Moreover, this increase in O2 permeability is associated with a modest increase in the O2/N2 permselectivity (4.75 versus 4.67).
|
8 |
Development and Characterization of Ethanol-Compatibilized PPO-Based EPMM MembranesWang, Qiang 22 August 2011 (has links)
Emulsion polymerized mixed matrix (EPMM) membranes is a new category of membranes, which incorporate silica-based inorganic nanoparticles dispersed in continuous phase of an organic polymer. The uniqueness of the EPMM membranes comes from the fact that they may combine otherwise incompatible inorganic and organic phases. This is achieved by the synthesis of the inorganic nanoparticles from a silica precursor in a stable emulsion, in which an aqueous phase is dispersed in a continuous phase of the polymer solution. More specifically, the silica precursor soluble in the polymer solution polymerizes in contact with the aqueous phase, and consequently the latter acts as finely dispersed micro reactors.
The objective of this work was to optimize the previously developed protocol for the synthesis of poly (2,6-dimethyl-1,4pheneylene oxide) (PPO) based EPMM membranes, and to characterize their physical and gas transport properties. In particular, the effects of inorganic loading and the membrane post-treatment protocol on the permeability and selectivity of the membranes were of interest. However, the results showed that the obtained permeation and separation were virtually not affected by the theoretical Si loading and the post-treatment protocol. Moreover, in comparison to the base PPO membranes, the observed O2 permeability and the O2/N2 permselectivity have generally decreased. The differential scanning calorimetry (DSC) analysis of the synthesized membranes showed an important scatter of the glass transition temperatures (Tg) of the EPMM membranes with the values generally lower than the Tg of the base PPO. Moreover, the inductively coupled plasma mass spectrometry (ICP-MS) showed the silica content in selected EPMM membranes to be far below the expected theoretical level. This, in combination with the 29Si nuclear magnetic resonance (29Si NMR) results, showed that most of the already low silica content comes from the unreacted silica source (tetraethylorthosilicate) and have led to the second phase of the project in which a modified synthesis protocol has been developed.
The major differences of the modified protocol compared to the original one include the replacement of a surfactant, 1-octanol, by ethanol and using greater concentrations of the reactants. To study the effect of different parameters involved in the synthesis protocol, a Gravimetric Powder experiment, in which the inorganic polymerization is carried out in an emulsion with a pure solvent rather than a polymer solution, has been designed. The Gravimetric Powder experiments have confirmed polymerization of tetraethylorthosilicate (TEOS) in the emulsion system. Using the conditions, which resulted in the maximum production of the polymerized TEOS in the Gravimetric Powder experiments, one set of new EPMM membranes has been synthesized and characterized.
The new EPMM membranes have the Tg of 228.2oC, which is distinctly greater compared to the base PPO, and contain one order of magnitude more of silica compared to the old EPMM membranes. More importantly, the 29Si NMR analysis has proven that the silica content in the new EPMM membranes originates from the reacted rather than unreacted TEOS. Interestingly, the observed conversion of TEOS in the new EPMM membranes, exceeding 20%, is greater than the largest conversion in the Gravimetric Powder experiments. The oxygen permeability in the new EPMM membrane of 33.8 Barrer is more than twice that of the base PPO membrane. Moreover, this increase in O2 permeability is associated with a modest increase in the O2/N2 permselectivity (4.75 versus 4.67).
|
9 |
Development and Characterization of Ethanol-Compatibilized PPO-Based EPMM MembranesWang, Qiang 22 August 2011 (has links)
Emulsion polymerized mixed matrix (EPMM) membranes is a new category of membranes, which incorporate silica-based inorganic nanoparticles dispersed in continuous phase of an organic polymer. The uniqueness of the EPMM membranes comes from the fact that they may combine otherwise incompatible inorganic and organic phases. This is achieved by the synthesis of the inorganic nanoparticles from a silica precursor in a stable emulsion, in which an aqueous phase is dispersed in a continuous phase of the polymer solution. More specifically, the silica precursor soluble in the polymer solution polymerizes in contact with the aqueous phase, and consequently the latter acts as finely dispersed micro reactors.
The objective of this work was to optimize the previously developed protocol for the synthesis of poly (2,6-dimethyl-1,4pheneylene oxide) (PPO) based EPMM membranes, and to characterize their physical and gas transport properties. In particular, the effects of inorganic loading and the membrane post-treatment protocol on the permeability and selectivity of the membranes were of interest. However, the results showed that the obtained permeation and separation were virtually not affected by the theoretical Si loading and the post-treatment protocol. Moreover, in comparison to the base PPO membranes, the observed O2 permeability and the O2/N2 permselectivity have generally decreased. The differential scanning calorimetry (DSC) analysis of the synthesized membranes showed an important scatter of the glass transition temperatures (Tg) of the EPMM membranes with the values generally lower than the Tg of the base PPO. Moreover, the inductively coupled plasma mass spectrometry (ICP-MS) showed the silica content in selected EPMM membranes to be far below the expected theoretical level. This, in combination with the 29Si nuclear magnetic resonance (29Si NMR) results, showed that most of the already low silica content comes from the unreacted silica source (tetraethylorthosilicate) and have led to the second phase of the project in which a modified synthesis protocol has been developed.
The major differences of the modified protocol compared to the original one include the replacement of a surfactant, 1-octanol, by ethanol and using greater concentrations of the reactants. To study the effect of different parameters involved in the synthesis protocol, a Gravimetric Powder experiment, in which the inorganic polymerization is carried out in an emulsion with a pure solvent rather than a polymer solution, has been designed. The Gravimetric Powder experiments have confirmed polymerization of tetraethylorthosilicate (TEOS) in the emulsion system. Using the conditions, which resulted in the maximum production of the polymerized TEOS in the Gravimetric Powder experiments, one set of new EPMM membranes has been synthesized and characterized.
The new EPMM membranes have the Tg of 228.2oC, which is distinctly greater compared to the base PPO, and contain one order of magnitude more of silica compared to the old EPMM membranes. More importantly, the 29Si NMR analysis has proven that the silica content in the new EPMM membranes originates from the reacted rather than unreacted TEOS. Interestingly, the observed conversion of TEOS in the new EPMM membranes, exceeding 20%, is greater than the largest conversion in the Gravimetric Powder experiments. The oxygen permeability in the new EPMM membrane of 33.8 Barrer is more than twice that of the base PPO membrane. Moreover, this increase in O2 permeability is associated with a modest increase in the O2/N2 permselectivity (4.75 versus 4.67).
|
10 |
Enabling membrane reactor technology using polymeric membranes for efficient energy and chemical productionLi, Yixiao January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Mary E. Rezac / Membrane reactor is a device that simultaneously carrying out reaction and membrane-based separation. The advantageous transport properties of the membranes can be employed to selectively remove undesired products or by-products from the reaction mixture, to break the thermodynamic barrier, and to selectively supply the reactant. In this work, membrane reactor technology has been exploited with robust H₂ selective polymeric membranes in the process of hydrogenation and dehydrogenation.
A state-of-the-art 3-phase catalytic membrane contactor is utilized in the processes of soybean hydrogenation and bio-oil hydro-deoxygenation, where the membrane functions as phase contactor, H₂supplier, and catalytic support. Intrinsically skinned asymmetric Polyetherimide (PEI) membranes demonstrated predominant H₂permeance and selectivity. By using the PEI membrane in the membrane contactor, soybean oil is partially hydrogenated efficiently at relatively mild reaction conditions compared with a conventional slurry reactor. In the hydroprocessing of bio-oil using the same system, the membrane successfully removed water, an undesired component from bio-oil by pervaporation.
The more industrially feasible membrane-assisted reactor is studied in the alkane dehydrogenation process. Viable polymeric materials and their stability in elevated temperatures and organic environment are examined. The blend polymeric material of Matrimid® 5218 and Polybenzimidazole (PBI) remained H₂permeable and stable with the presence of hydrocarbons, and displayed consistent selectivity of H2/hydrocarbon, which indicated the feasibility of using the material to fabricate thermally stable membrane for separation.
The impact of membrane-assisted reactor is evaluated using finite parameter process simulation in the model reaction of the dehydrogenation of methylcyclohexane (MCH). By combining tested catalyst performance, measured transport properties of the material and hypothetical membrane configuration, by using a membrane assisted packed-bed reactor, the thermodynamic barrier of the reaction is predicted to be broken by the removal of H₂. The overall dehydrogenation conversion can be increased by up to 20% beyond equilibrium.
The predicted results are justified by preliminary experimental validation using intrinsically skinned asymmetric Matrimid/PBI blend membrane. The conversions at varied temperatures partially exceeded equilibrium, indicating successful removal of H₂by the blend membrane as well as decent thermal stability of the membrane at elevated temperatures with the presence of hydrocarbons.
The successful outcome of membrane contactor and membrane-assisted reactor using robust polymeric membranes shows the effectiveness and efficiency of membrane reactors in varied application. The future work should be focusing on two direction, to further develop durable and efficient membranes with desired properties; and to improve the reactor system with better catalytic performance, more precise control in order to harvest preferable product and greater yield.
|
Page generated in 0.1441 seconds