• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 15
  • 15
  • 15
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development and Characterization of Ethanol-Compatibilized PPO-Based EPMM Membranes

Wang, Qiang January 2011 (has links)
Emulsion polymerized mixed matrix (EPMM) membranes is a new category of membranes, which incorporate silica-based inorganic nanoparticles dispersed in continuous phase of an organic polymer. The uniqueness of the EPMM membranes comes from the fact that they may combine otherwise incompatible inorganic and organic phases. This is achieved by the synthesis of the inorganic nanoparticles from a silica precursor in a stable emulsion, in which an aqueous phase is dispersed in a continuous phase of the polymer solution. More specifically, the silica precursor soluble in the polymer solution polymerizes in contact with the aqueous phase, and consequently the latter acts as finely dispersed micro reactors. The objective of this work was to optimize the previously developed protocol for the synthesis of poly (2,6-dimethyl-1,4pheneylene oxide) (PPO) based EPMM membranes, and to characterize their physical and gas transport properties. In particular, the effects of inorganic loading and the membrane post-treatment protocol on the permeability and selectivity of the membranes were of interest. However, the results showed that the obtained permeation and separation were virtually not affected by the theoretical Si loading and the post-treatment protocol. Moreover, in comparison to the base PPO membranes, the observed O2 permeability and the O2/N2 permselectivity have generally decreased. The differential scanning calorimetry (DSC) analysis of the synthesized membranes showed an important scatter of the glass transition temperatures (Tg) of the EPMM membranes with the values generally lower than the Tg of the base PPO. Moreover, the inductively coupled plasma mass spectrometry (ICP-MS) showed the silica content in selected EPMM membranes to be far below the expected theoretical level. This, in combination with the 29Si nuclear magnetic resonance (29Si NMR) results, showed that most of the already low silica content comes from the unreacted silica source (tetraethylorthosilicate) and have led to the second phase of the project in which a modified synthesis protocol has been developed. The major differences of the modified protocol compared to the original one include the replacement of a surfactant, 1-octanol, by ethanol and using greater concentrations of the reactants. To study the effect of different parameters involved in the synthesis protocol, a Gravimetric Powder experiment, in which the inorganic polymerization is carried out in an emulsion with a pure solvent rather than a polymer solution, has been designed. The Gravimetric Powder experiments have confirmed polymerization of tetraethylorthosilicate (TEOS) in the emulsion system. Using the conditions, which resulted in the maximum production of the polymerized TEOS in the Gravimetric Powder experiments, one set of new EPMM membranes has been synthesized and characterized. The new EPMM membranes have the Tg of 228.2oC, which is distinctly greater compared to the base PPO, and contain one order of magnitude more of silica compared to the old EPMM membranes. More importantly, the 29Si NMR analysis has proven that the silica content in the new EPMM membranes originates from the reacted rather than unreacted TEOS. Interestingly, the observed conversion of TEOS in the new EPMM membranes, exceeding 20%, is greater than the largest conversion in the Gravimetric Powder experiments. The oxygen permeability in the new EPMM membrane of 33.8 Barrer is more than twice that of the base PPO membrane. Moreover, this increase in O2 permeability is associated with a modest increase in the O2/N2 permselectivity (4.75 versus 4.67).
12

Synthesis and Characterization of Toughened Thermally Rearranged Polymers, Poly(2,6-Dimethylphenylene-oxide) Based Copolymers and Polymer Blends for Gas Separation Membranes

Zhang, Wenrui 20 June 2017 (has links)
Thermally rearranged (TR) polymers have outstanding gas separation properties, but are limited in their industrial application due to being mechanically brittle. A series of low volume fraction of a poly(arylene ether sulfone) (PAES) block was introduced into the TR precursor polyhydroxyimide (PI) chain to improve mechanical properties without compromising gas transport properties. The multiblock copolyhydroxyimide incorporated the PAES in systematically varied amounts and copolymerized it with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride and 3,3’-dihydroxy-4,4’-diaminobiphenyl. Before thermal rearrangement, the PI-co-PAES precursors exhibited much more improved mechanical properties (tensile stress and strain at break) than those of homo polyimide precursor. After thermal rearrangement, tensile stress and strain at break of all TR copolymers decreased comparing to their corresponding precursors, but improved comparing to the homo TR polymer. Poly(phenylene oxide) (PPO) based copolymers (Chapter 4) and polymer blends (Chapter 5) were also studied for use as gas separation membranes. The polymer materials were cast into films, then crosslinked in the solid state with UV light. The ketone and benzylic methyl groups crosslinked upon exposure to UV light. For the study of PPO copolymers, copolymers were prepared by polycondensation of a difunctional PPO oligomer with 4,4’-difluorobenzophenone or 1,3-bis(4-fluorobenzoyl)benzene respectively. This study offers a means for fabrication of membrane films, fibers or composites, as well as tuning of gas transport properties through crosslinking in the solid state. While for the study of PPO polymer blends, PPO polymers with Mn’s from 2000-22,000 g/mole were synthesized and blended with a poly(arylene ether ketone) derived from bisphenol A and difluorobenzophenone (BPA-PAEK). The crosslinked blends had improved gas selectivities over their linear counterparts. The 90/10 wt/wt 22k PPO/BPA PAEK crosslinked blends gained the most O2/N2 selectivity and maintained a high permeability. / Ph. D.
13

Synthesis and Characterization of High Performance Polymers for Gas Separation and Water Purification Membranes and as Interfacial Agents for Thermplastic Carbon Fiber Composites

Joseph, Ronald Matthew 03 July 2018 (has links)
This dissertation focuses on the synthesis and characterization of high performance polymers, specifically polybenzimidazoles (PBIs) for gas separation applications and polyimides (PI) for water purification and as interfacial agents for thermoplastic carbon fiber composites. Two methods for improving the gas transport properties (for H2/CO2 separation) of a tetraaminodiphenylsulfone (TADPS)-based polybenzimidazole were investigated. Low molecular weight poly(propylene carbonate) (PPC) and poly(ethylene oxide) (PEO) were incorporated as sacrificial additives that could be removed via a controlled heat treatment protocol. PBI films containing 7 and 11 wt% PPC (blend) and 13 wt% PEO (graft) were fabricated and the gas transport properties and mechanical properties after heat treatment were measured and compared to the PBI homopolymer. After heat treatment, the 7 wt% PPC blend exhibited the highest performance while retaining the toughness exhibited by the PBI homopolymer. Novel sulfonated polyimides and their monomers were synthesized for use as interfacial agents and water purification membranes. Polyimides are high performance polymers that have high thermal, mechanical, and chemical stability. The objective was to assess structure-property relationships of novel sulfonated polyimides prepared by direct polymerization of the diamine monomers. A series of sulfonated polyimides was synthesized using an ester-acid polymerization method with varying degrees of sulfonation (20%, 30%, and 50% disulfonated and 50% and 100% monosulfonated polyimides). The results showed that the toughness of the polyimides in the fully hydrated state was much better than current commercial cation exchange membranes. A 100% disulfonated polyimide (sPI) and poly(amic acid) salt (PAAS) using the same monomers used for the synthesis of Ultem® were utilized as suspending agents for the fabrication of coated sub-micron polyetherimide (PEI) particles. Sub-micron particles were obtained using 1 wt% PAAS and 4 wt% sPI to coat the PEI. The PEI particles were coupled onto ozone treated carbon fibers using a silane coupling agent. SEM images showed a significant amount of particle coating on the treated carbon fibers compared to the non-silane treated carbon fibers. / PHD
14

Control of Pore Structure in Plasma-Polymerized SiOCH Films for Gas Separation / Contrôle de la porosité dans les films SiOCH de polymère-plasma pour la séparation gazeuse

Lo, Chia-Hao 19 July 2010 (has links)
La synthèse d'une membrane composite formée d'une couche fine de surface de structure très réticulée et permsélective aux gaz déposée sur un substrat poreux a été étudiée comme solution pour accroître la perméabilité aux gaz tout en conservant une sélectivité importante. Une couche mince de polymère-plasma SiOCH a été retenue comme membrane de séparation gazeuse car elle possède une structure dont l'ultramicroporisté peut être contrôlée en ajustant les paramètres du procédé plasma comme la puissance, le flux de monomère et la pression de travail. Néanmoins, dans la membrane SiOCH, la taille moyenne des pores et leur distribution sont difficiles à appréhender par des techniques de caractérisation classiques, notamment proche de la surface car elle est très fine. Ce mémoire de thèse concerne le contrôle de la structure poreuse dans une couche mince de polymère-plasma SiOCH déposée sur un substrat polymère en utilisant un précurseur organosilicié. La spectroscopie d'annihilation de positron couplée à un faisceau de positron lent a été utilisée pour identifier la microstructure de couches minces SiOCH avec la profondeur. Ceci a nécessité tout d'abord l'acquisition d'une bonne connaissance de la caractérisation de l'annihilation de positron de matériaux polymères et céramiques. Des couches minces de SiOCH conformes ou superhydrophobes (SHP) ont été obtenues à deux fréquences différentes, respectivement à 13,56 MHz ou 40 kHz. Pour une couche conforme, le type de substrat, la structure chimique du précurseur et la puissance RF sont les paramètres majeurs qui influencent la structure des pores. Quand les films de SiOCH sont composées de deux couches (couche uniforme de surface et couche de transition) déposées sur un substrat poreux, l'analyse PAS met en évidence une couche de transition large et l'ensemble possède une perméabilité aux gaz élevée grâce à la porosité de surface du support. Lors de la préparation des couches minces SHP, quand la pression totale dépasse 0,6 mbar, la nucléation en phase gaz apparaît ce qui augmente la rugosité de la surface. Ceci induit des angles de contact à l'eau supérieurs à 160° et une hystérésis d'angles de contact avancée-reculée de seulement 2°. La préservation des chaînes carbonées et la microstructure sont les facteurs déterminant pour accroître l'hydrophobicité des couches minces de SiOCH. / In gas separation, the fabrication of composite membranes consisting of a permselective thin top layer with high cross-linking structures and a porous substrate has been regarded as a solution for improving gas permeability and simultaneously retaining high selectivity. A plasma-polymerized SiOCH film has been known as an appropriate gas separation membrane because it possesses a dense structure, the crosslinking degree of which could be controlled by adjusting plasma parameters such as plasma power, monomer flow rate, and system pressure. However, the pore size and distribution in SiOCH films, especially in the region of depth profile, are difficult to measure by conventional techniques because of they are very thin.This thesis is concerned with the control of pore structure in a plasma-polymerized SiOCH film on a polymeric substrate by using an organosilicon source. The positron annihilation spectroscopy (PAS) coupled to the slow positron beam technique was used to identify the microstructure of SiOCH films as a function of depth. This step required to have a good understanding of the positron annihilation characteristics of different materials such as organic, inorganic, and hybrid materials. Depending on plasma frequency adjustments, SiOCH films with a flat and a superhydrophobic (SHP) surface were fabricated at 13.56 MHz and 40 kHz, respectively. For a flat SiOCH film, substrate type, chemical structure of precursor, and RF power were the major variables that influenced the pore structure. When SiOCH films composed of two layers (bulk and transitions layers) were deposited on porous substrates, they displayed a long transition layer based on the PAS analysis and possessed a high gas permeability due to the surface porosity of the substrate. When the precursor used possessed a cyclic ring structure, an opportunity of a break-up of the cyclic ring would increase with increasing RF power and then induce formation of new big pores. For the preparation of SHP films, when the total pressure was higher than 0.6 mbar, the gas nucleation reaction was enhanced to induce roughness on SiOCH films, and it would show a high WCA of over 160o and a low WCAH of only 2 degrees. Both the hydrocarbon preservation and microstructure were the main factors in improving the surface superhydrophobicity of SiOCH films.
15

Synthetic Two-Dimensional Materials: A New Paradigm of Membranes for Ultimate Separation

Zheng, Zhikun, Grünker, Ronny, Feng, Xinliang 07 May 2018 (has links)
Microporous membranes act as selective barriers and play an important role in industrial gas separation and water purification. The permeability of such membranes is inversely proportional to their thickness. Synthetic two-dimensional materials (2DMs), with a thickness of one to a few atoms or monomer-units are ideal candidates for developing separation membranes. In this Progress Report, we present groundbreaking advances in the design, synthesis, processing, and application of 2DMs for gas and ion separations, as well as water desalination. After the introduction in Section 1, this report describes the syntheses, structures, and mechanical properties of 2DMs in Section 2. In Section 3, we will discuss the established methods for processing 2DMs into selective permeation membranes and address the separation mechanism and their performances. Finally, current challenges and emerging research directions, which need to be addressed for developing next generation separation membranes, are summarized in the Conclusion and Perspective.

Page generated in 0.1389 seconds