Spelling suggestions: "subject:"atructured metabolic model"" "subject:"estructured metabolic model""
1 |
Modélisation de la croissance des plantes supérieures pour les systèmes de support-vie : conception d'un modèle global et simulation des transferts de masse et d'énergie à l'échelle de la plante / Higher plant growth modelling for life support systems : global model design and simulation of mass and energy transfers at the plant levelHezard, Pauline 12 September 2012 (has links)
Les missions spatiales habitées de longue durée nécessitent des systèmes de support-vie efficaces recyclant l’air, l’eau et la nourriture avec un apport extérieur minimum en matière et énergie. L’air et l’eau peuvent être recyclés par des méthodes purement physico-chimiques, tandis que la production de nourriture ne peut être faite sans la présence d’organismes vivants. Le projet Micro-Ecological Life Support System Alternative (MELiSSA, alternative de système de support-vie micro-écologique) de l’Agence Spatiale Européenne inclut des plantes supérieures cultivées dans une chambre close contrôlée, associée à d’autres compartiments microbiens. Le contrôle à long terme de la chambre de culture et du système de support-vie entier requiert des modèles prédictifs efficaces. Le bouclage du bilan massique et la prédiction de la réponse de la plante dans un environnement extraterrestre inhabituel mettent en avant l’importance de modèles mécanistes basés sur le principe des bilans de matière et d’énergie.Une étude bibliographique poussée a été réalisée afin de lister et analyser les modèles de croissance de plantes supérieures existants. De nombreux modèles existent, ils simulent la plupart des processus de la plante. Cependant aucun des modèles structurés globaux n’est suffisamment mécaniste ni équilibré en terme d’échange de masse pour une application dans un système de support-vie clos. Ainsi, une nouvelle structure est proposée afin de simuler tous les termes du bilan massique au niveau de la plante, en incluant les différentes échelles de l’étude : les processus généraux, l’échelle de l’organe et l’échelle de la molécule. Les résultats d’une première approche utilisant des lois physiques mécanistes simples pour les échanges de matière et d’énergie, une stoechiométrie unique pour la production de biomasse et quelques lois empiriques pour la prédiction des paramètres architecturaux sont illustrés et comparés avec des résultats expérimentaux obtenus dans un environnement contrôlé. Une analyse mathématique du modèle est réalisée et tous ces résultats sont discutés afin de proposer les prochaines étapes de développement. Ceci est décrit en détail pour l’inclusion de modèles de processus plus complexes dans les futures versions du modèle ; les expériences qui devraient être réalisées ainsi que les mesures nécessaires sont proposées. Ceci conduit à la description d’une nouvelle conception de chambre de culture expérimentale. / For long-term manned space missions, it is necessary to develop efficient life support systems recycling air, water and food with a minimum supply of matter and energy. Air and water can be recycled from purely physico-chemical systems; however food requires se presence of living organisms. The Micro-Ecological Life Support System Alternative (MELiSSA) project of the European Space Agency includes higher plants grown in a closed and controlled chamber associated with other microbial compartments. The long-term control of the growth chamber and entire life support system requires efficient predictive models. The mass balance closure and the prediction in uncommon extraterrestrial environments highlight the importance of mechanistic models based on the mass and energy balances principles.An extensive bibliographic study has been performed in order to list and analyse the existing models of higher plant growth. Many models already exist, simulating most of the plant processes. However none of the global, structured models is sufficiently mechanistic and balanced in terms of matter exchange for an application in closed life support systems. Then a new structure is proposed in order to simulate all the terms of the mass balance at the plant level, including the different scales of study: general processes, organ scale and molecular scale. The results of the first approach using simple mechanistic physical laws for mass and energy exchange, a unique stoichiometry for biomass production and few empirical laws for the prediction of architectural parameters are illustrated and compared with experimental results obtained in a controlled environment. A mathematical analysis of the model is performed and all these results are discussed in order to propose further developments. This is described in detail for the implementation of more complex models of processes in the future model versions; the experiments that should be performed including the main measurements are proposed. This leads to the description of a new design of experimental growth chamber.
|
Page generated in 0.1014 seconds