• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Baigtinio tipo g- struktūrų vidinės sietys / Intrinsic connections of finite type of G- structures

Balčiūnas, Aidas 02 July 2010 (has links)
Vienas svarbiausių šiuolaikinės diferencialinės geometrijos skyrių yra glodžių G- struktūrų teorija, kuriai pradžią davė klasikinės Rymano erdvės struktūros nagrinėjimas. G- struktūra glodžioje daugdaroje yra gaunama paėmus jos reperių sluoksniuotės redukciją , atitinkantį neišsigimusių matricų grupės pogrupį G. G-struktūros egzistuoja ne bet kurioje daugdaroje. Šiame darbe yra nagrinėjama tik baigtinio tipo G- struktūrų vidinės sietys. Yra įrodoma, kad kiekvieną baigtinio tipo G- struktūrą atitinka baigtinio tipo diferencialinė lygtis ant daugdaros . G- struktūrų geometrija nagrinėjama netradiciniu būdu nagrinėjant jų infinitezimalių simetrijų diferencialines lygtis. Šiuo metodu yra išnagrinėtos G- struktūrų afininės sietys, taip pat ir normalinės sietys. Paskutiniosios G- struktūrų geometrijoje nebuvo iki šiol tyrinėtos. / The most important part of differential geometry in our days is the theory of smooth G- structures, which started with the analyses of clasical construction of Riemannian space. G-structure in smooth manifold is acquired, when we take reduction of its frame bundle corresponding to subgroup G of non-degeneracy matrix group . It‘s important to note, that G- structures do not exist in every manifold. In this paper are considering intrisic connections only of finite type of G- structures. It is proved, that every finite type of G- structure corresponds to finite type of differential equation on the manifold . The Geometry of G- structures is investigated not traditionally while analyzing differential equations of infetisimal simmetrics of G- structures. There are analysed affine connections of G- structures, also and normal connections. The former haven‘t been investigated in geometry of G- structures.

Page generated in 0.0507 seconds