Spelling suggestions: "subject:"sluoksniuotė"" "subject:"sluoksniuotės""
1 |
Apie trečios eilės liestinių sluoksniuočių geometriją / About the tangent bundle geometry order 3Mickutė, Laura 23 June 2005 (has links)
In this work is analysed the tangent bundle geometry order 3. Those bundles are defined like 3 - jet space. Co - ordinates transformation formulas of those bundles are received, how the object of linear connection inducted affine connections is demonstrated. In this work the theorem how the object of linear connection of tangent bundle inducted linear connection of tangent bundle order 3 is proved.
|
2 |
Reperių sluoksniuočių tiesinių siečių tęsiniai / Extensions of linear connections of bundles of framesIliukevič, Viktorija 10 June 2004 (has links)
NB: santraukoje neįsikelia formulės! The graduation paper examines frame bundles B (Vn ), whose base is n–dimensional differential manifold Vn and the first differential extensions of this stratification J1B(Vn). The bundle of frames is normalized by way of linear connection object F ; provided this object is the linear function of coordinates p , then the linear connection of stratification B(Vn) defines affine connection Vn of reference space. The thesis analyses the overall linear connection and linear co-connection of stratification J1B(Vn) and related basal differentiations. It has been proven that the linear connection of bundle of frames B(Vn) indicates the linear connection and linear co-connection of extended stratification J1B(Vn), the relation between the ratios of the induced connection and the induced co-connection and the representation of the components of curvature objects of the obtained induced linear connection.
|
3 |
Baigtinio tipo g- struktūrų vidinės sietys / Intrinsic connections of finite type of G- structuresBalčiūnas, Aidas 02 July 2010 (has links)
Vienas svarbiausių šiuolaikinės diferencialinės geometrijos skyrių yra glodžių G- struktūrų teorija, kuriai pradžią davė klasikinės Rymano erdvės struktūros nagrinėjimas. G- struktūra glodžioje daugdaroje yra gaunama paėmus jos reperių sluoksniuotės redukciją , atitinkantį neišsigimusių matricų grupės pogrupį G. G-struktūros egzistuoja ne bet kurioje daugdaroje. Šiame darbe yra nagrinėjama tik baigtinio tipo G- struktūrų vidinės sietys. Yra įrodoma, kad kiekvieną baigtinio tipo G- struktūrą atitinka baigtinio tipo diferencialinė lygtis ant daugdaros . G- struktūrų geometrija nagrinėjama netradiciniu būdu nagrinėjant jų infinitezimalių simetrijų diferencialines lygtis. Šiuo metodu yra išnagrinėtos G- struktūrų afininės sietys, taip pat ir normalinės sietys. Paskutiniosios G- struktūrų geometrijoje nebuvo iki šiol tyrinėtos. / The most important part of differential geometry in our days is the theory of smooth G- structures, which started with the analyses of clasical construction of Riemannian space. G-structure in smooth manifold is acquired, when we take reduction of its frame bundle corresponding to subgroup G of non-degeneracy matrix group . It‘s important to note, that G- structures do not exist in every manifold. In this paper are considering intrisic connections only of finite type of G- structures. It is proved, that every finite type of G- structure corresponds to finite type of differential equation on the manifold . The Geometry of G- structures is investigated not traditionally while analyzing differential equations of infetisimal simmetrics of G- structures. There are analysed affine connections of G- structures, also and normal connections. The former haven‘t been investigated in geometry of G- structures.
|
4 |
Specialių tiesinių elementų erdvių geometrija / The geometry of space of specific linear elementsKibildienė, Lina 29 June 2009 (has links)
Šiame darbe nagrinėjama speciali atraminių elementų erdvė – tiesinių elementų erdvė. Šios geometrijos bendrąją tiesinių ir afiniųjų siečių teoriją sukūrė V. Bliznikas. Jis parodė, [5] kaip tiesinės sieties geometrinis objektas indukuoja aukštesniųjų eilių afiniųjų, taip pat tenzorinių siečių objektams. V. Blizniko sukurtais tyrimo metodais dalinai naudojomės ir šiame darbe.
Metrinių hiperplokštuminių elementų erdvė yra taip vadinamų normalizuotų erdvių atvejis. Normalizuotos erdvės tai tokios, kuriose apibrėžtos koks nors diferencialinis – geometrinis objektas, kurio invariantai ir sudaro normalizuotos erdvės geometrijos turinį. Tokiais objektais dažnai būna skaliarinė funkcija. (Finslerio ar Kartano erdvės), metrinis tenzorius (tiesinių ar hiperplokštuminių elementų erdvės), afiniosios sieties objektas (afiniosios sieties erdvės) ir pan.
Šiame darbe nagrinėjamos metrinių tiesinių elementų erdvės, kurios yra normalizuojamos metrinio tenzoriaus pagalba. Be to, tas tenzorius turi specialią struktūrą (žr. [1]). Ta struktūra charakteringa tuo, kad visuomet tokios erdvės yra Landsbergo erdvių analogai. Darbe pavyko tokioms metrikoms sukonstruoti vidines beveik kompleksines ir beveik sandaugos struktūras, surasti jų integruojamumo sąlygą, kurios dėka metrikos specifika yra kitokia nei analogiškos sąlygos Finslerio erdvėse.
Darbas sudarytas ir iš įžangos ir 8 paragrafų. Pirmajame paragrafe dėstomas įvadas į liestinių sluoksniuočių geometriją. Antrajame nagrinėjama šių erdvių... [toliau žr. visą tekstą] / The elements of metric space with a special form of metric are dealt with in the work. It is shown how in such spase linear and affine links are defined with the help of metric tenzor, the ogjects of curvature are founds the existence of the type of metric affine links is proved. It is proved that the metric tenzor induces two parametric almost complex and almost the structures of product, the integration criteria of these structures are found. Keywords: • differentiable manifold • tangent stratified; • linear and affine traceable; • integrated struktures; • structural tensors.
|
5 |
Vektorinių sluoksniuočių tenzorinės struktūros / Tensor structures of vector bundlesLoginova, Galina 22 June 2006 (has links)
Vector bundles , which basic space is smooth n-dimensional space with affine connection, are exploring in this paper. It was proved that linear connection of such bundle defines affine connection, there were found curvature objects of these connections. It was also proved that linear connection induces inside almost product’s structure in bundle , there were explored integrable conditions of this structure and defined criterions on affine connections that are associated with these structures.
|
Page generated in 0.0344 seconds