• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal Upfc Control And Operations For Power Systems

Wu, Xiaohe 01 January 2004 (has links)
The content of this dissertation consists of three parts. In the first part, optimal control strategies are developed for Unified Power Flow Controller (UPFC) following the clearance of fault conditions. UPFC is one of the most versatile Flexible AC Transmission devices (FACTs) that have been implemented thus far. The optimal control scheme is composed of two parts. The first is an optimal stabilization control, which is an open-loop ‘Bang’ type of control. The second is an suboptimal damping control, which consists of segments of ‘Bang’ type control with switching functions the same as those of a corresponding approximate linear system. Simulation results show that the proposed control strategy is very effective in maintaining stability and damping out transient oscillations following the clearance of the fault. In the second part, a new power market structure is proposed. The new structure is based on a two-level optimization formulation of the market. It is shown that the proposed market structure can easily find the optimal solutions for the market while takeing factors such as demand elasticity into account. In the last part, a mathematical programming problem is formulated to obtain the maximum value of the loadibility factor, while the power system is constrained by steady-state dynamic security constraints. An iterative solution procedure is proposed for the problem, and the solution gives a slightly conservative estimate of the loadibility limit for the generation and transmission system.
2

Control strategies for exothermic batch and fed-batch processes : a sub-optimal strategy is developed which combines fast response with a chosen control signal safety margin : design procedures are described and results compared with conventional control

Kaymaz, I. Ali January 1989 (has links)
There is a considerable scope for improving the temperature control of exothermic processes. In this thesis, a sub-optimal control strategy is developed through utilizing the dynamic, simulation tool. This scheme is built around easily obtained knowledge of the system and still retains flexibility. It can be applied to both exothermic batch and fed-batch processes. It consists of servo and regulatory modes, where a Generalized Predictive Controller (GPC) was used to provide self-tuning facilities. The methods outlined allow for limited thermal runaway whilst keeping some spare cooling capacity to ensure that operation at constraints are not violated. A special feature of the method proposed is that switching temperatures and temperature profiles can be readily found from plant trials whilst the addition rate profile Is capable of fairly straightforward computation. The work shows that It is unnecessary to demand stability for the whole of the exothermic reaction cycle, permitting a small runaway has resulted in a fast temperature response within the given safety margin. The Idea was employed for an exothermic single Irreversible reaction and also to a set of complex reactions. Both are carried out in a vessel with a heating/cooling coil. Two constraints are Imposed; (1) limited heat transfer area, and (11) a maximum allowable reaction temperature Tmax. The non-minimum phase problem can be considered as one of the difficulties in managing exothermic fed-batch process when cold reactant Is added to vessel at the maximum operating temperature. The control system coped with this within limits, a not unexpected result. In all cases, the new strategy out-performed the conventional controller and produced smoother variations in the manipulated variable. The simulation results showed that batch to batch variations and disturbances In cooling were successfully handled. GPC worked well but can be susceptible to measurement noise.
3

Control strategies for exothermic batch and fed-batch processes A sub-optimal strategy is developed which combines fast response with a chosen control signal safety margin. Design procedures are described and results compared with conventional control.

Kaymaz, I. Ali January 1989 (has links)
There is a considerable scope for improving the temperature control of exothermic processes. In this thesis, a sub-optimal control strategy is developed through utilizing the dynamic, simulation tool. This scheme is built around easily obtained knowledge of the system and still retains flexibility. It can be applied to both exothermic batch and fed-batch processes. It consists of servo and regulatory modes, where a Generalized Predictive Controller (GPC) was used to provide self-tuning facilities. The methods outlined allow for limited thermal runaway whilst keeping some spare cooling capacity to ensure that operation at constraints are not violated. A special feature of the method proposed is that switching temperatures and temperature profiles can be readily found from plant trials whilst the addition rate profile Is capable of fairly straightforward computation. The work shows that It is unnecessary to demand stability for the whole of the exothermic reaction cycle, permitting a small runaway has resulted in a fast temperature response within the given safety margin. The Idea was employed for an exothermic single Irreversible reaction and also to a set of complex reactions. Both are carried out in a vessel with a heating/cooling coil. Two constraints are Imposed; (1) limited heat transfer area, and (11) a maximum allowable reaction temperature Tmax. The non-minimum phase problem can be considered as one of the difficulties in managing exothermic fed-batch process when cold reactant Is added to vessel at the maximum operating temperature. The control system coped with this within limits, a not unexpected result. In all cases, the new strategy out-performed the conventional controller and produced smoother variations in the manipulated variable. The simulation results showed that batch to batch variations and disturbances In cooling were successfully handled. GPC worked well but can be susceptible to measurement noise. / Higher Education Ministry and Scientific Research

Page generated in 0.0968 seconds