Spelling suggestions: "subject:"subriemannian geometry"" "subject:"riemannian geometry""
11 |
Deux problèmes de contrôle géométrique : holonomie horizontale et solveur d'esquisse / Two problems of Geometric Control : Horizontal Holonomy and Solver of SketchHafassa, Boutheina 13 January 2016 (has links)
Nous étudions deux problèmes différents qui ont leur origine dans la théorie du contrôle géométrique. Le Problème I consiste à étendre le concept du groupe d'holonomie horizontale sur une variété affine. Plus précisément, nous considérons une variété connexe lisse de dimension finie M, une connexion affine ∇ avec le groupe d'holonomie H∇ et une distribution lisse ∆ complètement non intégrable. Dans un premier temps, nous définissons le groupe d'holonomie ∆-horizontale H∆∇ comme le sous-groupe de H∇ obtenu par le transport parallèle le long des lacets tangents à ∆. Nous donnons les propriétés élémentaires de H∆∇ et ensuite nous faisons une étude détaillée en utilisant le formalisme de roulement. Il est montré en particulier que H∆∇ est un groupe de Lie. Dans un second temps, nous avons étudié un exemple explicite où M est un groupe de Carnot libre d'ordre 2 avec m ≥ 2 générateurs, et ∇ est la connexion de Levi-Civita associé à une métrique riemannienne sur M. Nous avons montré dans ce cas particulier que H∆∇ est compact et strictement inclus dans H∇ dès que m≥3. Le Problème II étudie la modélisation du problème du solveur d'esquisse. Ce problème est une des étapes d'un logiciel de CFAO. Notre but est d'arriver à une modélisation mathématique bien fondée et systématique du problème du solveur d'esquisse. Il s'agira ensuite de comprendre la convergence de l'algorithme, d'en améliorer les résultats et d'en étendre les fonctionnalités. L'idée directrice de l'algorithme est de remplacer tout d'abord les points de l'espace des sphères par des déplacements (éléments du groupe) et puis d'utiliser une méthode de Newton sur les groupes de Lie ainsi obtenus. Dans cette thèse, nous avons classifié les groupes de déplacements possibles en utilisant la théorie des groupes de Lie. En particulier, nous avons distingué trois ensembles, chaque ensemble contenant un type d'objet: le premier est l'ensemble des points, noté Points , le deuxième est l'ensemble des droites, noté Droites, et le troisième est l'ensemble des cercles et des droites, que nous notons ∧. Pour chaque type d'objet nous avons étudié tous les groupes de déplacements possibles, selon les propriétés souhaitées. Nous proposons finalement d'utiliser les groupes de déplacements suivant: pour le déplacement des points, le groupe des translations, qui agit transitivement sur Points ; pour les droites, le groupe des translations et rotations, qui est de dimension 3 et agit transitivement (globalement mais pas localement) sur Droites ; sur les droites et cercles, le groupe des anti-translations, rotations et dilatations qui est de dimension 4 et agit transitivement (globalement mais pas localement) sur ∧. / We study two problems arising from geometric control theory. The Problem I consists of extending the concept of horizontal holonomy group for affine manifolds. More precisely, we consider a smooth connected finite-dimensional manifold M, an affine connection ∇ with holonomy group H∇ and ∆ a smooth completely non integrable distribution. We define the ∆-horizontal holonomy group H∆∇ as the subgroup of H∇ obtained by ∇-parallel transporting frames only along loops tangent to ∆. We first set elementary properties of H∆∇ and show how to study it using the rolling formalism. In particular, it is shown that H∆∇ is a Lie group. Moreover, we study an explicit example where M is a free step-two homogeneous Carnot group with m≥2 generators, and ∇ is the Levi-Civita connection associated to a Riemannian metric on M, and show in this particular case that H∆∇ is compact and strictly included in H∇ as soon as m≥3. The Problem II is studying the modeling of the problem of solver sketch. This problem is one of the steps of a CAD/CAM software. Our goal is to achieve a well founded mathematical modeling and systematic the problem of solver sketch. The next step is to understand the convergence of the algorithm, to improve the results and to expand the functionality. The main idea of the algorithm is to replace first the points of the space of spheres by displacements (elements of the group) and then use a Newton's method on Lie groups obtained. In this thesis, we classified the possible displacements of the groups using the theory of Lie groups. In particular, we distinguished three sets, each set containing an object type: the first one is the set of points, denoted Points, the second is the set of lines, denoted Lines, and the third is the set of circles and lines, we note that ∧. For each type of object, we investigated all the possible movements of groups, depending on the desired properties. Finally, we propose to use the following displacement of groups for the displacement of points, the group of translations, which acts transitively on Lines ; for the lines, the group of translations and rotations, which is 3-dimensional and acts transitively (globally but not locally) on Lines ; on lines and circles, the group of anti-translations, rotations and dilations which has dimension 4 and acts transitively (globally but not locally) on ∧.
|
12 |
Propriétés métriques des ensembles de niveau des applications différentiables sur les groupes de Carnot / Metric properties of level sets of differentiable maps on Carnot groupsKozhevnikov, Artem 29 May 2015 (has links)
Nous étudions les propriétés métriques locales des ensembles de niveau des applicationshorizontalement différentiables entre des groupes de Carnot, c'est-à-dire différentiable par rapport à la structure sous-riemannienne intrinsèque.Nous considérons des applications dont la différentielle horizontale est surjective,et notre étude peut être vue comme une généralisation du théorème des fonctions implicites pour les groupes de Carnot.Tout d'abord, nous présentons deux notions de tangence dans les groupes de Carnot:la première basée sur la condition de platitude au sens de Reifenberg et la deuxième issue de l'analyse convexe classique.Nous montrons que dans les deux cas, l'espace tangent à un ensemble de niveau coïncide avec le noyau de la différentielle horizontale.Nous montrons que cette condition de tangence caractérise en fait les ensembles de niveaudits ‘co-abéliens', c'est-à-dire ceux pour lesquels l'espace d'arrivée est abélien, et qu'une telle caractérisation n'est pas vraie en général.Ce résultat sur les espaces tangents a plusieurs conséquences remarquables.La plus importante est que la dimension de Hausdorff des ensembles de niveau est celle à laquelle l'on s'attend.Nous montrons également la connectivité locale des ensembles de niveau, et le fait que les ensembles de niveau de dimension 1 sont topologiquement des arcs simples.Pour les ensembles de niveau de dimension 1 nous trouvons une formule de l'aire qui permet d'exprimer la mesure de Hausdorff en termes d'intégrales de Stieltjes généralisées.Ensuite, nous menons une étude approfondie du cas particulier des ensembles de niveau dans les groupes d'Heisenberg.Nous montrons que les ensembles de niveau sont topologiquement équivalents à leurs espaces tangents.Il s'avère que la mesure de Hausdorff des ensembles de niveau de codimension élevée est souvent irrégulière, étant, par exemple, localement nulle ou infinie.Nous présentons une condition simple de régularité supplémentaire pour une application pour assurer la régularité au sens d'Ahlfors des ses ensembles de niveau.Parmi d'autres résultats, nous obtenons une nouvelle caractérisation généraledes graphes Lipschitziens associés à une décomposition en produit semi-direct d'un groupe de Carnot.Nous traitons, en particulier, le cas des groupes de Carnot dont le nombre de stratesest plus grand que $2$.Cette caractérisation nous permet de déduire une nouvelle caractérisation des ensemblesde niveau co-abéliens qui admettent une représentation en tant que graphe. / Metric properties of level sets of differentiable maps on Carnot groupsAbstract.We investigate the local metric properties of level sets of mappings defined between Carnot groups that are horizontally differentiable, i.e.with respect to the intrinsic sub-Riemannian structure. We focus on level sets of mapping having a surjective differential,thus, our study can be seen as an extension of implicit function theorem for Carnot groups.First, we present two notions of tangency in Carnot groups: one based on Reifenberg's flatness condition and another coming from classical convex analysis.We show that for both notions, the tangents to level sets coincide with the kernels of horizontal differentials.Furthermore, we show that this kind of tangency characterizes the level sets called ``co-abelian'', i.e.for which the target space is abelian andthat such a characterization may fail in general.This tangency result has several remarkable consequences.The most important one is that the Hausdorff dimension of the level sets is the expected one. We also show the local connectivity of level sets and, the fact that level sets of dimension one are topologically simple arcs.Again for dimension one level set, we find an area formula that enables us to compute the Hausdorff measurein terms of generalized Stieltjes integrals.Next, we study deeply a particular case of level sets in Heisenberg groups. We show that the level sets in this case are topologically equivalent to their tangents.It turns out that the Hausdorff measure of high-codimensional level sets behaves wildly, for instance, it may be zero or infinite.We provide a simple sufficient extra regularity condition on mappings that insures Ahlfors regularity of level sets.Among other results, we obtain a new general characterization of Lipschitz graphs associated witha semi-direct splitting of a Carnot group of arbitrary step.We use this characterization to derive a new characterization of co-ablian level sets that can be represented as graphs.
|
Page generated in 0.0587 seconds