• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Partial Differential Equations for Modelling Wound Geometry

Ugail, Hassan 20 March 2022 (has links)
No / Wounds arising from various conditions are painful, embarrassing and often requires treatment plans which are costly. A crucial task, during the treatment of wounds is the measurement of the size, area and volume of the wounds. This enables to provide appropriate objective means of measuring changes in the size or shape of wounds, in order to evaluate the efficiency of the available therapies in an appropriate fashion. Conventional techniques for measuring physical properties of a wound require making some form of physical contact with it. We present a method to model a wide variety of geometries of wound shapes. The shape modelling is based on formulating mathematical boundary-value problems relating to solutions of Partial Differential Equations (PDEs). In order to model a given geometric shape of the wound a series of boundary functions which correspond to the main features of the wound are selected. These boundary functions are then utilised to solve an elliptic PDE whose solution results in the geometry of the wound shape. Thus, here we show how low order elliptic PDEs, such as the Biharmonic equation subject to suitable boundary conditions can be used to model complex wound geometry. We also utilise the solution of the chosen PDE to automatically compute various physical properties of the wound such as the surface area, volume and mass. To demonstrate the methodology a series of examples are discussed demonstrating the capability of the method to produce good representative shapes of wounds.
2

Bivariate box splines and surface subdivision

Kelil, Abey Sherif 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / Please refer to full text to view abstract.
3

A global search algorithm for phase transition pathways in computer-aided nano-design

He, Lijuan 13 January 2014 (has links)
One of the most important design issues for phase change materials is to engineer the phase transition process. The challenge of accurately predicting a phase transition is estimating the true value of transition rate, which is determined by the saddle point with the minimum energy barrier between stable states on the potential energy surface (PES). In this thesis, a new algorithm for searching the minimum energy path (MEP) is presented. The new algorithm is able to locate both the saddle point and local minima simultaneously. Therefore no prior knowledge of the precise positions for the reactant and product on the PES is needed. Unlike existing pathway search methods, the algorithm is able to search multiple transition paths on the PES simultaneously, which gives us a more comprehensive view of the energy landscape than searching individual ones. In this method, a Bézier curve is used to represent each transition path. During the searching process, the reactant and product states are located by minimizing the two end control points of the curve, while the shape of the transition pathway is refined by moving the intermediate control points of the curve in the conjugate directions. A curve subdivision scheme is developed so that multiple transitions paths can be located. The algorithm is demonstrated by examples of LEPS potential, LEPS plus harmonic oscillator potential, and PESs defined by Rastrigin function and Schwefel function.

Page generated in 0.1018 seconds