Spelling suggestions: "subject:"burface match"" "subject:"burface batch""
1 |
Partial Differential Equations for Modelling Wound GeometryUgail, Hassan 20 March 2022 (has links)
No / Wounds arising from various conditions are painful, embarrassing and often requires treatment plans which are costly. A crucial task, during the treatment of wounds is the measurement of the size, area and volume of the wounds. This enables to provide appropriate objective means of measuring changes in the size or shape of wounds, in order to evaluate the efficiency of the available therapies in an appropriate fashion. Conventional techniques for measuring physical properties of a wound require making some form of physical contact with it. We present a method to model a wide variety of geometries of wound shapes. The shape modelling is based on formulating mathematical boundary-value problems relating to solutions of Partial Differential Equations (PDEs). In order to model a given geometric shape of the wound a series of boundary functions which correspond to the main features of the wound are selected. These boundary functions are then utilised to solve an elliptic PDE whose solution results in the geometry of the wound shape. Thus, here we show how low order elliptic PDEs, such as the Biharmonic equation subject to suitable boundary conditions can be used to model complex wound geometry. We also utilise the solution of the chosen PDE to automatically compute various physical properties of the wound such as the surface area, volume and mass. To demonstrate the methodology a series of examples are discussed demonstrating the capability of the method to produce good representative shapes of wounds.
|
2 |
An investigation of near fields for HF shipboard antennas: surface PATCH and wire grid modeling using the Numerical Electromagnetics CodeElliniadis, Panagiotis 12 1900 (has links)
Approved for public release; distribution is unlimited / The Numerical Electromagnetics Code (NEC) was used to evaluate the admittance, average power gain, and the electric near and far field of a monopole antenna mounted on a cubical box over a perfectly conducting ground plane. Two models of the box, employing surface patches and wire grids, were evaluated. The monopole was positioned at the center, the edge, and at a corner of the box's top surface. Admittance and average power gain of the antenna were calculated. NEC results were examined and compared with experimental data and with results from "PATCH", another independent electromagnetic modeling code. The near electric field was calculated for both models. Computer graphics techniques were presented for plotting NEC near field results using DISSPLA (Display Integrated Software System and Plotting Language), a commercial graphics package. Contour and 3-D amplitude, and phase plots of the near electric fields were presented. Radiation patterns were calculated to relate far field and near field behavior of the antenna. Surface patch and wire grid models are compared and conclusions were presented. / Naval Ocean Systems Center / http://archive.org/details/investigationofn00elli / O&MN, Direct Funding / Lieutenant, Hellenic Navy
|
3 |
Extension of Wu-Peters bounds to Catmull-Clark and 4-8 subdivisionZhe, Wu 03 1900 (has links)
La méthode de subdivision Catmull-Clark ainsi que la méthode de subdivision Loop sont des normes industrielle de facto. D'autre part, la méthode de subdivision 4-8 est bien adaptée à la subdivision adaptative, parce que cette méthode augmente le nombre de faces ou de sommets par seulement un facteur de 2 à chaque raffinement. Cela promet d'être plus pratique pour atteindre un niveau donné de précision. Dans ce mémoire, nous présenterons une méthode permettant de paramétrer des surfaces de subdivision de la méthode Catmull-Clark et de la méthode 4-8. Par conséquent, de nombreux algorithmes mis au point pour des surfaces paramétriques pourrant être appliqués aux surfaces de subdivision Catmull-Clark et aux surfaces de subdivision 4-8. En particulier, nous pouvons calculer des bornes garanties et réalistes sur les patches, un peu comme les bornes correspondantes données par Wu-Peters pour la méthode de subdivision Loop. / The Catmull-Clark and Loop methods are de facto industry standards. On the other
hand, the 4-8 subdivision method is well suited for adaptive subdivision, because this
method increases the number of faces or vertices by only a factor of 2 at each step. It
is therefore more convenient when trying to achieve a given practical level of precision.
In this thesis we will introduce a method to parametrize the subdivision surfaces
of Catmull-Clark and 4-8 subdivision. As a consequence, many algorithms developed
for parametric surfaces will be able to be applied to Catmull-Clark and 4-8 subdivision
surfaces. In particular, we can produce bounds on surface patches which are both
guaranteed and realistic, similar to the bounds given by Wu-Peters [24] for the Loop
method
|
4 |
Extension of Wu-Peters bounds to Catmull-Clark and 4-8 subdivisionZhe, Wu 03 1900 (has links)
La méthode de subdivision Catmull-Clark ainsi que la méthode de subdivision Loop sont des normes industrielle de facto. D'autre part, la méthode de subdivision 4-8 est bien adaptée à la subdivision adaptative, parce que cette méthode augmente le nombre de faces ou de sommets par seulement un facteur de 2 à chaque raffinement. Cela promet d'être plus pratique pour atteindre un niveau donné de précision. Dans ce mémoire, nous présenterons une méthode permettant de paramétrer des surfaces de subdivision de la méthode Catmull-Clark et de la méthode 4-8. Par conséquent, de nombreux algorithmes mis au point pour des surfaces paramétriques pourrant être appliqués aux surfaces de subdivision Catmull-Clark et aux surfaces de subdivision 4-8. En particulier, nous pouvons calculer des bornes garanties et réalistes sur les patches, un peu comme les bornes correspondantes données par Wu-Peters pour la méthode de subdivision Loop. / The Catmull-Clark and Loop methods are de facto industry standards. On the other
hand, the 4-8 subdivision method is well suited for adaptive subdivision, because this
method increases the number of faces or vertices by only a factor of 2 at each step. It
is therefore more convenient when trying to achieve a given practical level of precision.
In this thesis we will introduce a method to parametrize the subdivision surfaces
of Catmull-Clark and 4-8 subdivision. As a consequence, many algorithms developed
for parametric surfaces will be able to be applied to Catmull-Clark and 4-8 subdivision
surfaces. In particular, we can produce bounds on surface patches which are both
guaranteed and realistic, similar to the bounds given by Wu-Peters [24] for the Loop
method
|
Page generated in 0.0585 seconds