• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SFO NEURONS ARE GLUCOSE RESPONSIVE

Medeiros, NANCY 29 September 2009 (has links)
Glucose is the primary metabolic signal reflecting the current energy state of the body. Glucose influences the excitability of neurons in the area postrema (AP), a circumventricular organ (CVO), prompting my interest in investigating whether the subfornical organ (SFO), another sensory CVO can also detect glucose. Using patch-clamp electrophysiology, we investigated the influence of changing glucose concentrations on the excitability of SFO neurons. In dissociated SFO neurons, altering the bath concentration of glucose (1mM, 5mM, 10mM) influenced the excitability of 49% of neurons tested (n=67). Glucose-inhibited (GI, hyperpolarized by increased glucose or depolarized by decreased glucose) and glucose-excited (GE, depolarized by increased glucose or hyperpolarized by decreased glucose) neurons were observed. GI neurons (27%, n=18) depolarized in response to decreased glucose (n=10, mean 4.6 ± 1.0 mV) or hyperpolarized in response to increased glucose (n=8, mean -4.4 ± 0.8 mV). In contrast, GE neurons (22%, n=15) depolarized in response to increased glucose (n=9, mean 6.4 ± 0.4) or hyperpolarized in response to decreased glucose (n=6, mean -4.8 ± 0.6 mV). These data show that glucose acts on a subpopulation of SFO neurons to produce both excitatory and inhibitory actions. Using voltage-clamp recordings two groups of SFO neurons were identified: those producing an outward current (GI) and those producing an inward current (GE) in response to increasing concentrations of glucose from 1 to 10 mM (n=23). The mean glucose-induced inward current had a reversal potential of -24 ± 12 mV (mean input resistance 2.0 ± 0.4 GΩ, n= 5), suggesting it may be mediated by a NSCC. The mean glucose-induced outward current (mean input resistance 1.7 ± 0.3 GΩ, n=7) had a mean reversal potential of -78 mV ± 1.2 mV (n = 5), suggesting it may be mediated by an activation of either K+ or Cl-current (ECl = -67 mV, EK = -89 mV). The SFO has projections to the PVN, a regulator of energy balance. I investigated the effects of increasing concentrations of glucose (1 to 10 mM) on the membrane potential of dissociated SFO neurons projecting to the PVN. Thirty percent of SFO-PVN neurons tested (n=10) responded with membrane hyperpolarizations (mean -4.2 ± 0.8 mV, n=3) suggesting a proportion of these cells are GI neurons. These data indicate that SFO neurons are glucose-responsive, which supports a role for the SFO as a regulator of energy balance. / Thesis (Master, Physiology) -- Queen's University, 2009-09-24 20:20:33.319
2

The Role of Voltage-Gated Sodium Channel 1.3 on Subfornical Organ Neurons

Huang, Shuo 09 October 2014 (has links)
The subfornical organ (SFO) is an area in the brain characterized by lack of a blood-brain-barrier that contributes to interaction between the circulation and the central nervous system, and plays key roles in regulation of energy balance. The SFO has two subregions- the dorsolateral peripheral SFO (pSFO) and the ventromedial core of the SFO (cSFO). This study demonstrated the expression of voltage-gated Na+ channel 1.3 (Nav1.3) in the SFO neurons, and a higher Nav1.3 expression in the pSFO. Based on the Nav1.3 expression pattern, intrinsic electrophysiological properties were compared between cSFO and non-cSFO neurons (putative pSFO neurons) identified by a SmartFlare mRNA probe. The patch clamp results revealed a bursting firing pattern in cSFO neurons and a higher spontaneous neuronal activity in non-cSFO neurons. The higher neuronal activity might be related to a more depolarized resting membrane potential and a higher trend of Na+ current density.
3

Angiotensin II Type 1 Receptor Activation in the Subfornical Organ Mediates Sodium-induced Pressor Responses In Wistar Rats

Tiruneh, Missale 27 July 2012 (has links)
Na+ sensitive hypertension in Dahl salt sensitive rats (Dahl S) or spontaneously hypertensive rats (SHR) is linked to intrinsic changes in the brain that favour increased Na+ entry into the cerebrospinal fluid (CSF) followed by increases in sympathetic hyperactivity and hypertension (Huang et al 2004). Similar responses are observed in salt resistant and Wistar rats that receive an intracerebroventricular (icv) infusion of Na+ rich artificial cerebrospinal fluid (aCSF) (Huang et al 2001, 2006). Downstream to increased CSF[Na+], a pathway has been described involving mineralocorticoid receptors (MRs), benzamil sensitive Na+ channels, “ouabain”, and angiotensin II type 1 receptors (AT1-R) (Huang et al 1998, Zhao et al 2001, Wang and Leenen 2003, Huang et al 2008). Blood pressure (BP) responses to increased CSF[Na+] may involve activation of AT1-R in the subfornical organ (SFO) as the BP response to injection of NaCl into a lateral ventricle can be blocked by AT1-R blockade in the SFO (Rohmeiss et al 1995a). The role of aldosterone and AT1-R in the SFO was investigated in mediating the BP and heart rate (HR) response to increases in CSF[Na+] and local [Na+]. Results show that infusion of 0.45M and 0.6M Na+ rich aCSF into the SFO increases BP but not HR. The BP is unchanged by infusion of a mannitol solution osmotically equivalent to 0.6M Na+ rich aCSF indicating that the SFO is Na+ sensitive. The BP response to a lower concentration of Na+ (0.45M) is enhanced by prior infusion of aldosterone while BP response to 0.6M is not further enhanced suggesting that the SFO may have maximal responsiveness to acute increases in [Na+] at 0.6M. The BP responses to Na+ rich aCSF in the SFO and the enhancement of those responses by aldosterone can be blocked by infusion of the AT1-R blocker Candesartan in the SFO. This response appears therefore to be mediated in the SFO through AT1-R activation, likely through Ang II release in the SFO. ICV infusion of Na+ rich aCSF increases BP but not HR and this response is partially blocked by infusion of the AT1-R blocker Candesartan in the SFO. This indicates that nearly half the BP responses to icv infusion of Na+ rich aCSF is mediated through AT1-R activation in the SFO. Lastly, contrary to icv, PVN and MnPO studies (Huang and Leenen 1996, Budzikowski and Leenen 2001, Gabor and Leenen 2009) ouabain in the SFO does not increase BP or HR. In conclusion, these results show that the SFO is Na+ sensitive and mediates half the BP responses to changes in CSF[Na+] through a mechanism that involves AT1-R activation. The SFO is further sensitized to Na+ by aldosterone presumably through its genomic effects. Lastly, ouabain in the SFO does not increase BP or HR suggesting that endogenous ouabain in the SFO is not involved in modulating BP or HR responses.
4

Molecular mechanisms of brain-ras hyperactivity upon fluid balance, and sufficiency of angiotensin production from the subfornical organ to affect fluid balance

Coble, Jeffrey 01 May 2015 (has links)
Fluid balance is critical for cells to maintain at homeostasis as disturbances in it can disrupt cellular function and consequently the physiology of an organism. Fluid loss for an organism can be classified as either intra- or extracellular, and it appears that different mechanisms have developed to restore homeostasis after intra- or extracellular dehydration. The renin-angiotensin system (RAS) has been shown to be an important mediator of extracellular dehydration induced fluid intake. Various lines of evidence have demonstrated the importance of the subfornical organ (SFO) to mediate fluid intake, especially due to the RAS, and we have shown that production and action of angiotensin (ANG) at the SFO is necessary for fluid intake due to ANG within the brain. Protein kinase C (PKC), specifically PKC-a;, is shown to be a necessary and sufficienty sufficient effector in the SFO to mediate brain angiotensin-II (ANG-II) polydipsia. It is also demonstrated that production of ANG from the SFO is sufficient to increase fluid intake through the ANG-II type 1 (AT1R) receptor and PKC. While production of ANG from the SFO is sufficient to increase fluid intake it is not sufficient to increase blood pressure, metabolism, or sodium appetite. Thus, production and action of ANG to activate PKC-a; is both necessary and sufficient to increase fluid intake at the SFO, and the fluid, pressor, and metabolic phenotypes of brain ANG through the SFO can be separated.
5

Angiotensin II Type 1 Receptor Activation in the Subfornical Organ Mediates Sodium-induced Pressor Responses In Wistar Rats

Tiruneh, Missale 27 July 2012 (has links)
Na+ sensitive hypertension in Dahl salt sensitive rats (Dahl S) or spontaneously hypertensive rats (SHR) is linked to intrinsic changes in the brain that favour increased Na+ entry into the cerebrospinal fluid (CSF) followed by increases in sympathetic hyperactivity and hypertension (Huang et al 2004). Similar responses are observed in salt resistant and Wistar rats that receive an intracerebroventricular (icv) infusion of Na+ rich artificial cerebrospinal fluid (aCSF) (Huang et al 2001, 2006). Downstream to increased CSF[Na+], a pathway has been described involving mineralocorticoid receptors (MRs), benzamil sensitive Na+ channels, “ouabain”, and angiotensin II type 1 receptors (AT1-R) (Huang et al 1998, Zhao et al 2001, Wang and Leenen 2003, Huang et al 2008). Blood pressure (BP) responses to increased CSF[Na+] may involve activation of AT1-R in the subfornical organ (SFO) as the BP response to injection of NaCl into a lateral ventricle can be blocked by AT1-R blockade in the SFO (Rohmeiss et al 1995a). The role of aldosterone and AT1-R in the SFO was investigated in mediating the BP and heart rate (HR) response to increases in CSF[Na+] and local [Na+]. Results show that infusion of 0.45M and 0.6M Na+ rich aCSF into the SFO increases BP but not HR. The BP is unchanged by infusion of a mannitol solution osmotically equivalent to 0.6M Na+ rich aCSF indicating that the SFO is Na+ sensitive. The BP response to a lower concentration of Na+ (0.45M) is enhanced by prior infusion of aldosterone while BP response to 0.6M is not further enhanced suggesting that the SFO may have maximal responsiveness to acute increases in [Na+] at 0.6M. The BP responses to Na+ rich aCSF in the SFO and the enhancement of those responses by aldosterone can be blocked by infusion of the AT1-R blocker Candesartan in the SFO. This response appears therefore to be mediated in the SFO through AT1-R activation, likely through Ang II release in the SFO. ICV infusion of Na+ rich aCSF increases BP but not HR and this response is partially blocked by infusion of the AT1-R blocker Candesartan in the SFO. This indicates that nearly half the BP responses to icv infusion of Na+ rich aCSF is mediated through AT1-R activation in the SFO. Lastly, contrary to icv, PVN and MnPO studies (Huang and Leenen 1996, Budzikowski and Leenen 2001, Gabor and Leenen 2009) ouabain in the SFO does not increase BP or HR. In conclusion, these results show that the SFO is Na+ sensitive and mediates half the BP responses to changes in CSF[Na+] through a mechanism that involves AT1-R activation. The SFO is further sensitized to Na+ by aldosterone presumably through its genomic effects. Lastly, ouabain in the SFO does not increase BP or HR suggesting that endogenous ouabain in the SFO is not involved in modulating BP or HR responses.
6

ADIPONECTIN MODULATES EXCITABILITY OF SUBFORNICAL ORGAN NEURONS AT DIFFERENT ENERGY STATES

Alim, Ishraq 01 April 2009 (has links)
Adiponectin (ADP) is an adipokine, which acts as an insulin sensitizing hormone. Recent studies have shown that adiponectin receptors (AdipoR1, AdipoR2) are present in the CNS; however, there is some debate as to whether or not ADP crosses the blood brain barrier (BBB). Circumventricular organs (CVO) are CNS sites outside the BBB, and thus represent sites at which circulating adiponectin may act to influence the CNS without having to cross the BBB. The subfornical organ (SFO) is a CVO that is responsive to a number of different circulating satiety signals including amylin, CCK, and ghrelin. We report here that the SFO also shows a high density of mRNA for both adiponectin receptors. These observations support the concept that the SFO may be a key player in sensing circulating ADP. To test the hypothesis that ADP influences the excitability of SFO neurons, we used current-clamp electrophysiology on dissociated SFO neurons to observe changes in membrane potential. ADP (10 nM) application effected the excitability of SFO neurons, where the cells either depolarized (8.9±0.9 mV, 21 of 97 cells) or hyperpolarized (-8.0±0.5 mV, 34 of 97 cells). Using single-cell RT-PCR we found that the majority of the responsive neurons expressed AdipoR1 or R2 and the non-responsive neurons expressed neither. In view of the recognized role of ADP in the regulation of energy balance, we next examined the effects of food deprivation for 48 hours on ADP signaling in the SFO. Our previous microarray analysis of SFO showed increases in AdipoR2 mRNA, with no significant change in AdipoR1 mRNA. We have also assessed the effects of such changes in receptor expression on ADP signaling in SFO neurons using calcium imaging and patch clamp techniques. In SFO neurons obtained from control animals, ADP induced increases in intracellular Ca2+ were observed in 25% of cells, while following food deprivation 0% of cells showed this response. Furthermore, 77% of neurons from starved animals showed clear depolarization, while no hyperpolarizing responses were observed. The results presented in this study suggest that adiponectin modulates the excitability of SFO neurons and that the response to ADP changes during starvation. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2008-09-17 18:07:35.099
7

Insulin modulates the electrical activity of dissociated and cultured Subfornical Organ (SFO) neurons in male Sprague Dawley Rats

Lakhi, Suman 06 January 2012 (has links)
The brain is protected by the blood brain barrier (BBB); areas lacking the BBB are termed circumventricular organs (CVOs). The SFO, a CVO is capable of detecting and responding to satiety signals that regulate energy balance. Insulin, a satiety signal, plays a role in energy balance and its actions at the SFO are unknown. The goal was to determine if cultured SFO neurons are electrophysiologically sensitive to insulin. Of 27 neurons tested 33% neurons hyperpolarized (-8.7 ± 1.7 mV), 37% neurons depolarized (10.5 ±2.8 mV) and 30% neurons (8 out of 27) showed no change in membrane potential. Input resistance changes indicated the modulation of two ion channels. Pharmacological data suggests hyperpolarization arises from the opening of KATP channels and depolarization results from the opening of non-selective cationic channels. Thus insulin modulates the electrical activity of SFO neurons and supports that the SFO is a sensor for maintaining energy homeostasis.
8

Insulin modulates the electrical activity of dissociated and cultured Subfornical Organ (SFO) neurons in male Sprague Dawley Rats

Lakhi, Suman 06 January 2012 (has links)
The brain is protected by the blood brain barrier (BBB); areas lacking the BBB are termed circumventricular organs (CVOs). The SFO, a CVO is capable of detecting and responding to satiety signals that regulate energy balance. Insulin, a satiety signal, plays a role in energy balance and its actions at the SFO are unknown. The goal was to determine if cultured SFO neurons are electrophysiologically sensitive to insulin. Of 27 neurons tested 33% neurons hyperpolarized (-8.7 ± 1.7 mV), 37% neurons depolarized (10.5 ±2.8 mV) and 30% neurons (8 out of 27) showed no change in membrane potential. Input resistance changes indicated the modulation of two ion channels. Pharmacological data suggests hyperpolarization arises from the opening of KATP channels and depolarization results from the opening of non-selective cationic channels. Thus insulin modulates the electrical activity of SFO neurons and supports that the SFO is a sensor for maintaining energy homeostasis.
9

Angiotensin II Type 1 Receptor Activation in the Subfornical Organ Mediates Sodium-induced Pressor Responses In Wistar Rats

Tiruneh, Missale January 2012 (has links)
Na+ sensitive hypertension in Dahl salt sensitive rats (Dahl S) or spontaneously hypertensive rats (SHR) is linked to intrinsic changes in the brain that favour increased Na+ entry into the cerebrospinal fluid (CSF) followed by increases in sympathetic hyperactivity and hypertension (Huang et al 2004). Similar responses are observed in salt resistant and Wistar rats that receive an intracerebroventricular (icv) infusion of Na+ rich artificial cerebrospinal fluid (aCSF) (Huang et al 2001, 2006). Downstream to increased CSF[Na+], a pathway has been described involving mineralocorticoid receptors (MRs), benzamil sensitive Na+ channels, “ouabain”, and angiotensin II type 1 receptors (AT1-R) (Huang et al 1998, Zhao et al 2001, Wang and Leenen 2003, Huang et al 2008). Blood pressure (BP) responses to increased CSF[Na+] may involve activation of AT1-R in the subfornical organ (SFO) as the BP response to injection of NaCl into a lateral ventricle can be blocked by AT1-R blockade in the SFO (Rohmeiss et al 1995a). The role of aldosterone and AT1-R in the SFO was investigated in mediating the BP and heart rate (HR) response to increases in CSF[Na+] and local [Na+]. Results show that infusion of 0.45M and 0.6M Na+ rich aCSF into the SFO increases BP but not HR. The BP is unchanged by infusion of a mannitol solution osmotically equivalent to 0.6M Na+ rich aCSF indicating that the SFO is Na+ sensitive. The BP response to a lower concentration of Na+ (0.45M) is enhanced by prior infusion of aldosterone while BP response to 0.6M is not further enhanced suggesting that the SFO may have maximal responsiveness to acute increases in [Na+] at 0.6M. The BP responses to Na+ rich aCSF in the SFO and the enhancement of those responses by aldosterone can be blocked by infusion of the AT1-R blocker Candesartan in the SFO. This response appears therefore to be mediated in the SFO through AT1-R activation, likely through Ang II release in the SFO. ICV infusion of Na+ rich aCSF increases BP but not HR and this response is partially blocked by infusion of the AT1-R blocker Candesartan in the SFO. This indicates that nearly half the BP responses to icv infusion of Na+ rich aCSF is mediated through AT1-R activation in the SFO. Lastly, contrary to icv, PVN and MnPO studies (Huang and Leenen 1996, Budzikowski and Leenen 2001, Gabor and Leenen 2009) ouabain in the SFO does not increase BP or HR. In conclusion, these results show that the SFO is Na+ sensitive and mediates half the BP responses to changes in CSF[Na+] through a mechanism that involves AT1-R activation. The SFO is further sensitized to Na+ by aldosterone presumably through its genomic effects. Lastly, ouabain in the SFO does not increase BP or HR suggesting that endogenous ouabain in the SFO is not involved in modulating BP or HR responses.
10

Novel insights on panic: emerging role of the subfornical organ (SFO) mechanisms and circuits

Winter, Andrew January 2019 (has links)
No description available.

Page generated in 0.0677 seconds