• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ADIPONECTIN MODULATES EXCITABILITY OF SUBFORNICAL ORGAN NEURONS AT DIFFERENT ENERGY STATES

Alim, Ishraq 01 April 2009 (has links)
Adiponectin (ADP) is an adipokine, which acts as an insulin sensitizing hormone. Recent studies have shown that adiponectin receptors (AdipoR1, AdipoR2) are present in the CNS; however, there is some debate as to whether or not ADP crosses the blood brain barrier (BBB). Circumventricular organs (CVO) are CNS sites outside the BBB, and thus represent sites at which circulating adiponectin may act to influence the CNS without having to cross the BBB. The subfornical organ (SFO) is a CVO that is responsive to a number of different circulating satiety signals including amylin, CCK, and ghrelin. We report here that the SFO also shows a high density of mRNA for both adiponectin receptors. These observations support the concept that the SFO may be a key player in sensing circulating ADP. To test the hypothesis that ADP influences the excitability of SFO neurons, we used current-clamp electrophysiology on dissociated SFO neurons to observe changes in membrane potential. ADP (10 nM) application effected the excitability of SFO neurons, where the cells either depolarized (8.9±0.9 mV, 21 of 97 cells) or hyperpolarized (-8.0±0.5 mV, 34 of 97 cells). Using single-cell RT-PCR we found that the majority of the responsive neurons expressed AdipoR1 or R2 and the non-responsive neurons expressed neither. In view of the recognized role of ADP in the regulation of energy balance, we next examined the effects of food deprivation for 48 hours on ADP signaling in the SFO. Our previous microarray analysis of SFO showed increases in AdipoR2 mRNA, with no significant change in AdipoR1 mRNA. We have also assessed the effects of such changes in receptor expression on ADP signaling in SFO neurons using calcium imaging and patch clamp techniques. In SFO neurons obtained from control animals, ADP induced increases in intracellular Ca2+ were observed in 25% of cells, while following food deprivation 0% of cells showed this response. Furthermore, 77% of neurons from starved animals showed clear depolarization, while no hyperpolarizing responses were observed. The results presented in this study suggest that adiponectin modulates the excitability of SFO neurons and that the response to ADP changes during starvation. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2008-09-17 18:07:35.099
2

The effects of neuropeptide Y on dissociated subfornical organ neurons

Shute, Lauren 24 January 2017 (has links)
The subfornical organ (SFO) is a sensory circumventricular organ, lacking a proper blood-brain barrier. Neurons of the SFO are exposed directly to the ionic environment and circulating signaling molecules in the plasma, providing a unique window for communication of physiological status from the periphery to the central nervous system (CNS). The SFO is recognized as a key site for hydromineral balance, cardiovascular regulation and energy homeostasis. Neuropeptide Y (NPY) is a potent stimulator of food intake when released centrally, and has well-documented pressor effects when released peripherally. It has been demonstrated that the SFO expresses NPY receptors, however the effects of NPY on SFO neurons has never been investigated. The aim of this study was to determine the effects of NPY on the electrophysiological properties of SFO neurons dissociated from Sprague Dawley rats. Using whole cell patch clamp techniques in the current-clamp configuration, we report that 300 nM NPY caused 16% of SFO neurons to depolarize and 26% to hyperpolarize. The remaining neurons were insensitive to NPY. These effects were dose-dependent with a combined EC50 of 3.7 nM. Specific NPY receptor antagonists were applied, suggesting that the Y5 receptor predominately elicited a hyperpolarizing effect, while the Y1 receptor had a mixed response that was predominately hyperpolarizing, and the Y2 receptor had a mixed response that was predominately depolarizing. Using the voltage-clamp configuration, it was also observed that NPY caused an increase in the voltage-gated K+ current density as well as a shift in membrane activation of the persistent Na+ current, mediating the hyperpolarizing and depolarizing effects, respectively. These findings indicate that NPY elicits electrophysiological changes on SFO neurons, suggesting that the SFO is a key site of action for NPY in mediating energy regulation and/or cardiovascular output. / February 2017

Page generated in 0.091 seconds