• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of whole-body vibration and axial rotation on musculoskeletal discomfort of the neck and trunk

Morgan, Lauren Jayne January 2011 (has links)
Elements of an individuals occupational exposure, such as their posture can affect their comfort during work, and also their long term musculoskeletal health. Knowledge as to the extent of the influence of particular aspects of the exposures can help in providing guidance on risk evaluation, and direct future technical design focus. In many situations the exposures interact, and even if the effects of individual exposures are understood, the interactions are often less so. This is certainly the case with off-road driving exposures. Specific investigations have focussed on the effects of vibration exposure, resulting in the development of international standards and guidelines on measurement and evaluation of exposure. Consideration of the posture of the operator can be accomplished through postural assessment tools, although none of the currently available methods are developed specifically for use within a vehicle environment. The issues of both the posture of the operator and the seated vibration exposure are particularly apparent in off-road agricultural driving environments, where the driving task dictates that operator is often required to maintain specific postures whilst also exposed to whole-body vibration. In agriculture, many of the tasks require the operator to maintain axially rotated postures to complete the task effectively. The analysis of the combined effects of the axial rotation of the operator and the whole-body vibration exposure has been limited to a few studies within the literature, and is currently poorly understood. The overall aim of the thesis was to assess the influence of axial rotation and whole-body vibration on the musculoskeletal discomfort of the neck and trunk, in order that the true extent of the exposure risk may be evaluated. A field study was conducted to determine the common characteristics of some typical exposures, to provide a basis for the laboratory studies. A survey of expert opinion was conducted, examining the knowledge and experience of experts in assessing the relative influence of axial rotation and whole-body vibration on operators musculoskeletal health. The main investigations of the thesis are focussed in the laboratory, where the objective and subjective effects of axial rotation (static and dynamic) and whole-body vibration were investigated. Objective measures included the investigation of muscular fatigue in response to exposures. The tasks investigated in the field study indicated that the exposures often exceed the EU Physical Agents Exposure Limit Value, and that the axial rotation is a large component of the postures required. The survey of expert opinion concluded that combined exposure to axial rotation and whole-body vibration would increase the risks of lower back pain, and that acknowledgement of combined exposures should be included when assessing for risk. The results of the laboratory studies indicated that the greatest discomfort was present when subjects were exposed to axial rotation in the neck and shoulders. Out of the 8 muscles investigated, at most 6 of the 8 indicated fatigue during an experimental exposure. The muscle group which was affected most by the exposures was the m. trapezius pars decendens. Findings demonstrated that when subjects were exposed to axial rotation and whole-body vibration they indicated discomfort and their muscles fatigued. However, there was poor correlation between the sites of discomfort and the location of muscular fatigue. The discomfort findings suggest that there is an increased risk of discomfort from experiencing axial rotation together with whole-body vibration. Investigations of muscular fatigue do not substantiate this finding.
2

Réactivité posturale et inconfort subjectif induits par un stimulus visuel

Hanssens, Jean-Marie 01 1900 (has links)
Il est bien connu des professionnels de la vision que l’ajustement des verres progressifs sur un patient presbyte peut induire de l’inconfort et des difficultés posturales (Timmis, Johnson, Elliott, & Buckley, 2010). Ces plaintes sont directement associées à l’information visuelle perçue à travers les verres progressifs. Le principal objectif de cette thèse est d’identifier quels sont les paramètres d’un stimulus visuel (p.ex. fréquence temporelle ou vélocité) à l’origine de la perturbation posturale et de l’inconfort. Les distorsions dynamiques perçues à travers des verres progressifs s’apparentent aux mouvements d’un bateau qui roule de droite à gauche ou qui tangue d’avant en arrière. Ce type de stimulation visuelle a été reproduit dans une voute d’immersion en réalité virtuelle avec un sol à texture de damier noir et blanc qui oscillait périodiquement de droite à gauche et d’avant en arrière à différentes fréquences et amplitudes. Les études qui portent sur ce sujet montrent que la réponse posturale induite visuellement augmente avec la vélocité de stimulation et diminue lorsque la fréquence augmente. Cette information peut paraitre contradictoire, car ces deux variables sont liées entre elles par l’amplitude et covarient dans le même sens. Le premier objectif de cette thèse était de déterminer les causes possibles de cette contradiction. En faisant varier la fréquence temporelle de stimulation visuelle, on retrouve deux domaines de réponse posturale. Le premier domaine correspond aux fréquences inférieures à 0,12 Hz. Dans ce domaine, la réponse posturale est visuodépendante et augmente avec la vélocité du stimulus. Le second domaine postural correspond aux fréquences supérieures à 0,25 Hz. Dans ce domaine, la réponse posturale sature et diminue avec l’augmentation de la fréquence. Cette saturation de la réponse posturale semble causée par des limitations biomécaniques et fréquentielles du système postural. D’autres études ont envisagé d’étudier l’inconfort subjectif induit par des stimuli visuels périodiques. Au sein de la communauté scientifique, deux théories principales se confrontent. La théorie sensorielle repose sur les conflits sensoriels induit par le stimulus visuel tandis que la théorie posturale suggère que l’inconfort est la conséquence de l’instabilité posturale. Nos résultats révèlent que l’inconfort subjectif induit par une stimulation visuelle dynamique dépend de la vélocité du stimulus plutôt que de sa fréquence. L’inconfort peut être prédit par l’instabilité naturelle des individus en l’absence de stimulus visuel comme le suggère la théorie posturale. Par contre, l’instabilité posturale induite par un stimulus visuel dynamique ne semble pas être une condition nécessaire et suffisante pour entrainer de l’inconfort. Ni la théorie sensorielle ni la théorie posturale ne permettent à elles seules d’expliquer tous les mécanismes à l’origine de l’inconfort subjectif. Ces deux théories sont complémentaires, l’une expliquant que l’instabilité intrinsèque est un élément prédictif de l’inconfort et l’autre que l’inconfort induit par un stimulus visuel dynamique résulte d’un conflit entre les entrées sensorielles et les représentations acquises par l’individu. / It is well know by eye care professionals that fitting progressive lenses on a presbyopic patient can induce some discomfort and postural difficulties (Timmis, Johnson, Eliott, & Buckley, 2010). The complaints are directly related to the visual information seen through progressive lenses. The main objective of this thesis is to identify the parameters of a visual stimulus (e.g. temporal frequency or velocity) causing the postural perturbation and discomfort. Dynamic distortions perceived in progressive lenses are similar to movements of a boat that rolls from side to side or pitches back and forth. This type of stimulation was reproduced in a full immersive virtual environment with simulated a black and white checkerboard at floor level. This checkerboard periodically swayed at different frequencies and amplitudes. Studies on this topic reveal that visually induced postural responses increase with stimulus velocity and decrease as frequency increases. This information may seem contradictory because these two variables are linked by the amplitude and covary in the same direction. The first objective was to determine the possible causes of this contradiction. Our results show that the postural response to the visual stimulus can be divided into several different areas depending on the frequency range. The first area corresponds to frequencies below 0,12Hz. In this category, postural response is dependent on visual information and increased with stimulus velocity. The second area corresponds to frequencies above 0,25Hz. In this category, postural response saturates and decreases with increasing frequency. This saturation seems to be caused by biomechanical and frequency limitations of the postural system. Other studies have examined subjective discomfort induced by periodic visual stimuli. In the scientific community, two main theories exist: the sensory conflict theory and the postural instability theory. The first theory is based on sensory conflicts induced by the visual stimulus while the second theory suggests that postural discomfort is the result of postural instability. Our results show that subjective discomfort induced by dynamic visual stimulation depends on the velocity of the stimulus rather than its frequency. Discomfort can be predicted by the natural instability of individuals in the absence of visual stimuli as suggested by the postural theory. However, postural instability induced by a dynamic visual stimulus is neither necessary nor sufficient to cause discomfort. According to our results, neither the sensory conflict theory, nor the postural instability theory on their own can explain all the mechanisms behind the appearance of subjective discomfort. These two theories are complementary, one explaining that the intrinsic instability is a predictor of discomfort; the other that discomfort induced by a dynamic visual stimulus involves a conflict between sensory input and representations obtained by the individual.
3

Réactivité posturale et inconfort subjectif induits par un stimulus visuel

Hanssens, Jean-Marie 01 1900 (has links)
Il est bien connu des professionnels de la vision que l’ajustement des verres progressifs sur un patient presbyte peut induire de l’inconfort et des difficultés posturales (Timmis, Johnson, Elliott, & Buckley, 2010). Ces plaintes sont directement associées à l’information visuelle perçue à travers les verres progressifs. Le principal objectif de cette thèse est d’identifier quels sont les paramètres d’un stimulus visuel (p.ex. fréquence temporelle ou vélocité) à l’origine de la perturbation posturale et de l’inconfort. Les distorsions dynamiques perçues à travers des verres progressifs s’apparentent aux mouvements d’un bateau qui roule de droite à gauche ou qui tangue d’avant en arrière. Ce type de stimulation visuelle a été reproduit dans une voute d’immersion en réalité virtuelle avec un sol à texture de damier noir et blanc qui oscillait périodiquement de droite à gauche et d’avant en arrière à différentes fréquences et amplitudes. Les études qui portent sur ce sujet montrent que la réponse posturale induite visuellement augmente avec la vélocité de stimulation et diminue lorsque la fréquence augmente. Cette information peut paraitre contradictoire, car ces deux variables sont liées entre elles par l’amplitude et covarient dans le même sens. Le premier objectif de cette thèse était de déterminer les causes possibles de cette contradiction. En faisant varier la fréquence temporelle de stimulation visuelle, on retrouve deux domaines de réponse posturale. Le premier domaine correspond aux fréquences inférieures à 0,12 Hz. Dans ce domaine, la réponse posturale est visuodépendante et augmente avec la vélocité du stimulus. Le second domaine postural correspond aux fréquences supérieures à 0,25 Hz. Dans ce domaine, la réponse posturale sature et diminue avec l’augmentation de la fréquence. Cette saturation de la réponse posturale semble causée par des limitations biomécaniques et fréquentielles du système postural. D’autres études ont envisagé d’étudier l’inconfort subjectif induit par des stimuli visuels périodiques. Au sein de la communauté scientifique, deux théories principales se confrontent. La théorie sensorielle repose sur les conflits sensoriels induit par le stimulus visuel tandis que la théorie posturale suggère que l’inconfort est la conséquence de l’instabilité posturale. Nos résultats révèlent que l’inconfort subjectif induit par une stimulation visuelle dynamique dépend de la vélocité du stimulus plutôt que de sa fréquence. L’inconfort peut être prédit par l’instabilité naturelle des individus en l’absence de stimulus visuel comme le suggère la théorie posturale. Par contre, l’instabilité posturale induite par un stimulus visuel dynamique ne semble pas être une condition nécessaire et suffisante pour entrainer de l’inconfort. Ni la théorie sensorielle ni la théorie posturale ne permettent à elles seules d’expliquer tous les mécanismes à l’origine de l’inconfort subjectif. Ces deux théories sont complémentaires, l’une expliquant que l’instabilité intrinsèque est un élément prédictif de l’inconfort et l’autre que l’inconfort induit par un stimulus visuel dynamique résulte d’un conflit entre les entrées sensorielles et les représentations acquises par l’individu. / It is well know by eye care professionals that fitting progressive lenses on a presbyopic patient can induce some discomfort and postural difficulties (Timmis, Johnson, Eliott, & Buckley, 2010). The complaints are directly related to the visual information seen through progressive lenses. The main objective of this thesis is to identify the parameters of a visual stimulus (e.g. temporal frequency or velocity) causing the postural perturbation and discomfort. Dynamic distortions perceived in progressive lenses are similar to movements of a boat that rolls from side to side or pitches back and forth. This type of stimulation was reproduced in a full immersive virtual environment with simulated a black and white checkerboard at floor level. This checkerboard periodically swayed at different frequencies and amplitudes. Studies on this topic reveal that visually induced postural responses increase with stimulus velocity and decrease as frequency increases. This information may seem contradictory because these two variables are linked by the amplitude and covary in the same direction. The first objective was to determine the possible causes of this contradiction. Our results show that the postural response to the visual stimulus can be divided into several different areas depending on the frequency range. The first area corresponds to frequencies below 0,12Hz. In this category, postural response is dependent on visual information and increased with stimulus velocity. The second area corresponds to frequencies above 0,25Hz. In this category, postural response saturates and decreases with increasing frequency. This saturation seems to be caused by biomechanical and frequency limitations of the postural system. Other studies have examined subjective discomfort induced by periodic visual stimuli. In the scientific community, two main theories exist: the sensory conflict theory and the postural instability theory. The first theory is based on sensory conflicts induced by the visual stimulus while the second theory suggests that postural discomfort is the result of postural instability. Our results show that subjective discomfort induced by dynamic visual stimulation depends on the velocity of the stimulus rather than its frequency. Discomfort can be predicted by the natural instability of individuals in the absence of visual stimuli as suggested by the postural theory. However, postural instability induced by a dynamic visual stimulus is neither necessary nor sufficient to cause discomfort. According to our results, neither the sensory conflict theory, nor the postural instability theory on their own can explain all the mechanisms behind the appearance of subjective discomfort. These two theories are complementary, one explaining that the intrinsic instability is a predictor of discomfort; the other that discomfort induced by a dynamic visual stimulus involves a conflict between sensory input and representations obtained by the individual.

Page generated in 0.0845 seconds