Spelling suggestions: "subject:"emporal frequency"" "subject:"atemporal frequency""
1 |
Spatiotemporal Tuning and Contrast Adaptation in Mouse Primary Visual CortexLeDue, Emily 27 July 2012 (has links)
Mice have emerged as a popular model of cortical visual processing due to their genetic manipulability. Compared to traditional animal models of visual processing there is less research describing the visual system of mice. Before we can use the genetic techniques available in mice, we must examine the similarity between their visual processing, and that of common animal models used in vision research. One useful method to characterize the way information about form and motion is processed is to examine the interaction between selectivity for spatial and temporal frequency of sine-wave gratings in a given visual area. In experiment 1, we investigated spatiotemporal tuning in neurons of mouse primary visual cortex (V1). Tuning for stimulus speed can readily be extracted from the spatiotemporal profile of a neuron, and we were interested in whether recently described differences in the degree of speed tuning in mouse V1 and macaque V1 were due to methodology. We confirm that speed tuning is rare in mouse V1, demonstrating a difference between motion processing in the striate cortex of mice and macaques. In experiment 2, we examined the spatiotemporal dependence of contrast adaptation in mouse V1 neurons. Little is known about the underlying cellular mechanisms of contrast adaptation, so the mouse provides an attractive model in which to study this phenomenon. We characterized the spatial and temporal frequency dependence of contrast adaptation in mouse V1 neurons simultaneously using a dynamic contrast ramp. We found that for most mouse V1 neurons there was often a difference between the grating that elicited maximal firing, and the grating where adaptation was most pronounced, such that adaptation was usually stronger at higher spatial frequencies.
|
2 |
Incremental and decremental L- and M-cone driven ERG responses: II. Sawtooth stimulation.Kremers, Jan, Pangeni, G., Tsaousis, K.T., McKeefry, Declan J., Murray, I.J., Parry, Neil R.A. 04 1900 (has links)
No / L- and M-cone driven on- and off- ERG responses and their interactions were examined using full field stimuli with sawtooth temporal profiles. The effects of temporal frequency and contrast were studied. ERG recordings were obtained from 21 trichromatic, 1 protanopic, and 1 deuteranopic subjects. ERGs to L-cone increments and decrements resembled those to M-cone decrements and increments, respectively (i.e., of the opposite polarity). Temporal frequency and contrast had little effect on the implicit times. All response components varied linearly with contrast. When stimulated simultaneously, the responsivities of most components were larger for counterphase than for inphase modulation. The retinal processing leading to an ERG response is reversed for L- and M-cone driven responses.
|
3 |
Psychophysical explorations of the illusion underpinning frequency doubling perimetry in glaucomaVallam, Kunjam Unknown Date (has links) (PDF)
The spatial frequency doubling illusion (FDI) occurs when the contrast of a low spatial frequency sinusoidal grating is modulated at high temporal frequencies – its apparent spatial frequency increases. Earlier suggestions were that the FDI is generated by a specific class of retinal ganglion cells, which are preferentially lost in the early stages of glaucoma. Based on this linking theory, frequency doubling perimetry (FDP) was developed and several clinical reports confirmed its high efficiency in diagnosing early glaucomatous vision loss. However, this linking theory is not universally accepted and newer suggestions posit that the illusion arises because of temporal frequency related difficulties in temporal phase encoding ability. This thesis psychophysically examines the spatiotemporal characteristics of both the FDI and temporal phase encoding ability with achromatic and equi-luminant (both red-green (RG) and blue-yellow (BY)) gratings at a range of spatiotemporal parameters including those eliciting the FDI. (For complete abstract open document)
|
4 |
Psychophysical explorations of the illusion underpinning frequency doubling perimetry in glaucomaVallam, Kunjam Unknown Date (has links) (PDF)
The spatial frequency doubling illusion (FDI) occurs when the contrast of a low spatial frequency sinusoidal grating is modulated at high temporal frequencies – its apparent spatial frequency increases. Earlier suggestions were that the FDI is generated by a specific class of retinal ganglion cells, which are preferentially lost in the early stages of glaucoma. Based on this linking theory, frequency doubling perimetry (FDP) was developed and several clinical reports confirmed its high efficiency in diagnosing early glaucomatous vision loss. However, this linking theory is not universally accepted and newer suggestions posit that the illusion arises because of temporal frequency related difficulties in temporal phase encoding ability. This thesis psychophysically examines the spatiotemporal characteristics of both the FDI and temporal phase encoding ability with achromatic and equi-luminant (both red-green (RG) and blue-yellow (BY)) gratings at a range of spatiotemporal parameters including those eliciting the FDI. (For complete abstract open document)
|
5 |
Temporal characteristics of L and M-cone isolating steady-state ERGsKommanapalli, Deepika, Murray, I.J., Kremers, Jan, Parry, Neil R.A., McKeefry, Declan J. 04 1900 (has links)
No / Cone isolating stimuli were used to assess the temporal frequency response characteristics of L- and M-cone electroretinograms (ERGs) in nine trichromatic and four dichromatic human observers. The stimuli comprised sinusoidal temporal modulations varying from 5 to 100 Hz. ERGs were recorded using corneal fiber electrodes and subjected to fast Fourier transform analysis. At low temporal frequencies (<10 Hz<10 Hz) the L- and M-cone ERGs had similar amplitude and exhibited minimal differences in apparent latency. At higher flicker rates (>20 Hz>20 Hz) L-cone ERGs had greater amplitudes and shorter apparent latencies than the M-cone responses. These differences between the L- and M-cone ERGs are consistent with their mediation by chromatic and luminance postreceptoral processing pathways at low and high temporal frequencies, respectively.
|
6 |
Réactivité posturale et inconfort subjectif induits par un stimulus visuelHanssens, Jean-Marie 01 1900 (has links)
Il est bien connu des professionnels de la vision que l’ajustement des verres progressifs sur un patient presbyte peut induire de l’inconfort et des difficultés posturales (Timmis, Johnson, Elliott, & Buckley, 2010). Ces plaintes sont directement associées à l’information visuelle perçue à travers les verres progressifs. Le principal objectif de cette thèse est d’identifier quels sont les paramètres d’un stimulus visuel (p.ex. fréquence temporelle ou vélocité) à l’origine de la perturbation posturale et de l’inconfort. Les distorsions dynamiques perçues à travers des verres progressifs s’apparentent aux mouvements d’un bateau qui roule de droite à gauche ou qui tangue d’avant en arrière. Ce type de stimulation visuelle a été reproduit dans une voute d’immersion en réalité virtuelle avec un sol à texture de damier noir et blanc qui oscillait périodiquement de droite à gauche et d’avant en arrière à différentes fréquences et amplitudes.
Les études qui portent sur ce sujet montrent que la réponse posturale induite visuellement augmente avec la vélocité de stimulation et diminue lorsque la fréquence augmente. Cette information peut paraitre contradictoire, car ces deux variables sont liées entre elles par l’amplitude et covarient dans le même sens. Le premier objectif de cette thèse était de déterminer les causes possibles de cette contradiction. En faisant varier la fréquence temporelle de stimulation visuelle, on retrouve deux domaines de réponse posturale. Le premier domaine correspond aux fréquences inférieures à 0,12 Hz. Dans ce domaine, la réponse posturale est visuodépendante et augmente avec la vélocité du stimulus. Le second domaine postural correspond aux fréquences supérieures à 0,25 Hz. Dans ce domaine, la réponse posturale sature et diminue avec l’augmentation de la fréquence. Cette saturation de la réponse posturale semble causée par des limitations biomécaniques et fréquentielles du système postural.
D’autres études ont envisagé d’étudier l’inconfort subjectif induit par des stimuli visuels périodiques. Au sein de la communauté scientifique, deux théories principales se confrontent. La théorie sensorielle repose sur les conflits sensoriels induit par le stimulus visuel tandis que la théorie posturale suggère que l’inconfort est la conséquence de l’instabilité posturale. Nos résultats révèlent que l’inconfort subjectif induit par une stimulation visuelle dynamique dépend de la vélocité du stimulus plutôt que de sa fréquence. L’inconfort peut être prédit par l’instabilité naturelle des individus en l’absence de stimulus visuel comme le suggère la théorie posturale. Par contre, l’instabilité posturale induite par un stimulus visuel dynamique ne semble pas être une condition nécessaire et suffisante pour entrainer de l’inconfort. Ni la théorie sensorielle ni la théorie posturale ne permettent à elles seules d’expliquer tous les mécanismes à l’origine de l’inconfort subjectif. Ces deux théories sont complémentaires, l’une expliquant que l’instabilité intrinsèque est un élément prédictif de l’inconfort et l’autre que l’inconfort induit par un stimulus visuel dynamique résulte d’un conflit entre les entrées sensorielles et les représentations acquises par l’individu. / It is well know by eye care professionals that fitting progressive lenses on a presbyopic patient can induce some discomfort and postural difficulties (Timmis, Johnson, Eliott, & Buckley, 2010). The complaints are directly related to the visual information seen through progressive lenses. The main objective of this thesis is to identify the parameters of a visual stimulus (e.g. temporal frequency or velocity) causing the postural perturbation and discomfort. Dynamic distortions perceived in progressive lenses are similar to movements of a boat that rolls from side to side or pitches back and forth. This type of stimulation was reproduced in a full immersive virtual environment with simulated a black and white checkerboard at floor level. This checkerboard periodically swayed at different frequencies and amplitudes.
Studies on this topic reveal that visually induced postural responses increase with stimulus velocity and decrease as frequency increases. This information may seem contradictory because these two variables are linked by the amplitude and covary in the same direction. The first objective was to determine the possible causes of this contradiction. Our results show that the postural response to the visual stimulus can be divided into several different areas depending on the frequency range. The first area corresponds to frequencies below 0,12Hz. In this category, postural response is dependent on visual information and increased with stimulus velocity. The second area corresponds to frequencies above 0,25Hz. In this category, postural response saturates and decreases with increasing frequency. This saturation seems to be caused by biomechanical and frequency limitations of the postural system.
Other studies have examined subjective discomfort induced by periodic visual stimuli. In the scientific community, two main theories exist: the sensory conflict theory and the postural instability theory. The first theory is based on sensory conflicts induced by the visual stimulus while the second theory suggests that postural discomfort is the result of postural instability. Our results show that subjective discomfort induced by dynamic visual stimulation depends on the velocity of the stimulus rather than its frequency. Discomfort can be predicted by the natural instability of individuals in the absence of visual stimuli as suggested by the postural theory. However, postural instability induced by a dynamic visual stimulus is neither necessary nor sufficient to cause discomfort. According to our results, neither the sensory conflict theory, nor the postural instability theory on their own can explain all the mechanisms behind the appearance of subjective discomfort. These two theories are complementary, one explaining that the intrinsic instability is a predictor of discomfort; the other that discomfort induced by a dynamic visual stimulus involves a conflict between sensory input and representations obtained by the individual.
|
7 |
Réactivité posturale et inconfort subjectif induits par un stimulus visuelHanssens, Jean-Marie 01 1900 (has links)
Il est bien connu des professionnels de la vision que l’ajustement des verres progressifs sur un patient presbyte peut induire de l’inconfort et des difficultés posturales (Timmis, Johnson, Elliott, & Buckley, 2010). Ces plaintes sont directement associées à l’information visuelle perçue à travers les verres progressifs. Le principal objectif de cette thèse est d’identifier quels sont les paramètres d’un stimulus visuel (p.ex. fréquence temporelle ou vélocité) à l’origine de la perturbation posturale et de l’inconfort. Les distorsions dynamiques perçues à travers des verres progressifs s’apparentent aux mouvements d’un bateau qui roule de droite à gauche ou qui tangue d’avant en arrière. Ce type de stimulation visuelle a été reproduit dans une voute d’immersion en réalité virtuelle avec un sol à texture de damier noir et blanc qui oscillait périodiquement de droite à gauche et d’avant en arrière à différentes fréquences et amplitudes.
Les études qui portent sur ce sujet montrent que la réponse posturale induite visuellement augmente avec la vélocité de stimulation et diminue lorsque la fréquence augmente. Cette information peut paraitre contradictoire, car ces deux variables sont liées entre elles par l’amplitude et covarient dans le même sens. Le premier objectif de cette thèse était de déterminer les causes possibles de cette contradiction. En faisant varier la fréquence temporelle de stimulation visuelle, on retrouve deux domaines de réponse posturale. Le premier domaine correspond aux fréquences inférieures à 0,12 Hz. Dans ce domaine, la réponse posturale est visuodépendante et augmente avec la vélocité du stimulus. Le second domaine postural correspond aux fréquences supérieures à 0,25 Hz. Dans ce domaine, la réponse posturale sature et diminue avec l’augmentation de la fréquence. Cette saturation de la réponse posturale semble causée par des limitations biomécaniques et fréquentielles du système postural.
D’autres études ont envisagé d’étudier l’inconfort subjectif induit par des stimuli visuels périodiques. Au sein de la communauté scientifique, deux théories principales se confrontent. La théorie sensorielle repose sur les conflits sensoriels induit par le stimulus visuel tandis que la théorie posturale suggère que l’inconfort est la conséquence de l’instabilité posturale. Nos résultats révèlent que l’inconfort subjectif induit par une stimulation visuelle dynamique dépend de la vélocité du stimulus plutôt que de sa fréquence. L’inconfort peut être prédit par l’instabilité naturelle des individus en l’absence de stimulus visuel comme le suggère la théorie posturale. Par contre, l’instabilité posturale induite par un stimulus visuel dynamique ne semble pas être une condition nécessaire et suffisante pour entrainer de l’inconfort. Ni la théorie sensorielle ni la théorie posturale ne permettent à elles seules d’expliquer tous les mécanismes à l’origine de l’inconfort subjectif. Ces deux théories sont complémentaires, l’une expliquant que l’instabilité intrinsèque est un élément prédictif de l’inconfort et l’autre que l’inconfort induit par un stimulus visuel dynamique résulte d’un conflit entre les entrées sensorielles et les représentations acquises par l’individu. / It is well know by eye care professionals that fitting progressive lenses on a presbyopic patient can induce some discomfort and postural difficulties (Timmis, Johnson, Eliott, & Buckley, 2010). The complaints are directly related to the visual information seen through progressive lenses. The main objective of this thesis is to identify the parameters of a visual stimulus (e.g. temporal frequency or velocity) causing the postural perturbation and discomfort. Dynamic distortions perceived in progressive lenses are similar to movements of a boat that rolls from side to side or pitches back and forth. This type of stimulation was reproduced in a full immersive virtual environment with simulated a black and white checkerboard at floor level. This checkerboard periodically swayed at different frequencies and amplitudes.
Studies on this topic reveal that visually induced postural responses increase with stimulus velocity and decrease as frequency increases. This information may seem contradictory because these two variables are linked by the amplitude and covary in the same direction. The first objective was to determine the possible causes of this contradiction. Our results show that the postural response to the visual stimulus can be divided into several different areas depending on the frequency range. The first area corresponds to frequencies below 0,12Hz. In this category, postural response is dependent on visual information and increased with stimulus velocity. The second area corresponds to frequencies above 0,25Hz. In this category, postural response saturates and decreases with increasing frequency. This saturation seems to be caused by biomechanical and frequency limitations of the postural system.
Other studies have examined subjective discomfort induced by periodic visual stimuli. In the scientific community, two main theories exist: the sensory conflict theory and the postural instability theory. The first theory is based on sensory conflicts induced by the visual stimulus while the second theory suggests that postural discomfort is the result of postural instability. Our results show that subjective discomfort induced by dynamic visual stimulation depends on the velocity of the stimulus rather than its frequency. Discomfort can be predicted by the natural instability of individuals in the absence of visual stimuli as suggested by the postural theory. However, postural instability induced by a dynamic visual stimulus is neither necessary nor sufficient to cause discomfort. According to our results, neither the sensory conflict theory, nor the postural instability theory on their own can explain all the mechanisms behind the appearance of subjective discomfort. These two theories are complementary, one explaining that the intrinsic instability is a predictor of discomfort; the other that discomfort induced by a dynamic visual stimulus involves a conflict between sensory input and representations obtained by the individual.
|
8 |
Spatial and temporal dependencies of the motion bridging effect: Investigations of an illusory motionStein, Maximilian 16 December 2019 (has links)
No description available.
|
9 |
Développement physiologique des voies visuelles chez le rat normal et chez celui ayant subi des convulsions hyperthermiquesPrévost, François 01 1900 (has links)
Les neurones des couches superficielles du collicule supérieur et du cortex visuel primaire du rat adulte sont sensibles à de basses fréquences spatiales de haut contraste défilant à des vitesses élevées. Entre les jours post-nataux 27-30 et l’âge adulte, les fréquences temporelles optimales des neurones du cortex visuel primaire augmentent, tandis que leurs seuils de contraste diminuent. Cependant, les fréquences spatiales optimales, les valeurs de résolution spatiale et les bandes passantes spatiales de ces neurones sont, dès l’ouverture des paupières, similaires à celles observées chez le rat adulte. Ces profils de réponse neuronale suggèrent que les projections rétino-colliculaires et rétino-géniculo-corticales sont essentiellement issues de neurones ganglionnaires rétinofuges magnocellulaires et koniocellulaires.
Les neurones du cortex visuel primaire du rat ayant subi des convulsions hyperthermiques présentent, dès l’ouverture des paupières, de basses fréquences spatiales optimales, de larges bandes passantes directionnelles et temporelles ainsi que des seuils de contraste élevés par rapport aux neurones du rat normal. À l’âge adulte, de basses fréquences temporelles optimales et de larges bandes passantes spatiales sont également observées chez le rat ayant subi des convulsions hyperthermiques. L’altération des profils de réponse des neurones du cortex visuel primaire du rat ayant subi de convulsions hyperthermiques suggère un déséquilibre entre les mécanismes neuronaux excitateurs et inhibiteurs de cette aire corticale. Ces résultats suggèrent également qu’un épisode unique de convulsions fébriles infantiles suffit à altérer le développement des propriétés spatio-temporelles des champs récepteurs des neurones du cortex visuel primaire. / Neurons in superficial layers of the rat superior colliculus and primary visual cortex are sensitive to highly contrasted low spatial frequencies drifting at fast speeds. Between post-natal days 27-30 and adulthood, the optimal temporal frequencies of neurons in the primary visual cortex increase, whereas their contrast thresholds decrease. However, the optimal spatial frequencies, spatial resolution values and spatial bandwidths of these neurons are, soon after eyelid opening, similar to those observed in the adult rat. These neuronal response profiles suggest that the retino-collicular and retino-geniculo-cortical projections are mainly innervated by magnocellular and koniocellular retinal ganglion cells. Neurons in the primary visual cortex of rats having experienced hyperthermic seizures are, soon after eyelid opening, sensitive to low optimal spatial frequencies and show broad directional and temporal bandwidths, as well as elevated contrast thresholds when compared to neurons of normal rats. At adulthood, low optimal temporal frequencies and broad spatial bandwidths are also observed in rats having experienced hyperthermic seizures. The alteration of response profiles of neurons in the primary visual cortex of rats having experienced hyperthermic seizures suggests an unbalance between excitatory and inhibitory mechanisms in this cortical structure. These results also suggest that a single episode of febrile seizures could be sufficient to impede the development of the spatio-temporal receptive field properties of neurons in the primary visual cortex.
|
10 |
An fMRI study of chromatic processing in humans / Untersuchung der menschlichen Farbverarbeitung mittels fMRTD'Souza, Dany Vijay 09 September 2009 (has links)
No description available.
|
Page generated in 0.0661 seconds