• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

Gislason-Lee, Amber J., Kumcu, A., Kengyelics, S.M., Brettle, D.S., Treadgold, L.A., Sivananthan, M., Davies, A.G. 27 October 2015 (has links)
Yes / Cardiologists use x-ray image sequences of the moving heart acquired in real-time to diagnose and treat cardiac patients. The amount of radiation used is proportional to image quality; however, exposure to radiation is damaging to patients and personnel. The amount by which radiation dose can be reduced without compromising patient care was determined. For five patient image sequences, increments of computer-generated quantum noise (white + colored) were added to the images, frame by frame using pixel-to-pixel addition, to simulate corresponding increments of dose reduction. The noise adding software was calibrated for settings used in cardiac procedures, and validated using standard objective and subjective image quality measurements. The degraded images were viewed next to corresponding original (not degraded) images in a two-alternativeforced- choice staircase psychophysics experiment. Seven cardiologists and five radiographers selected their preferred image based on visualization of the coronary arteries. The point of subjective equality, i.e., level of degradation where the observer could not perceive a difference between the original and degraded images, was calculated; for all patients the median was 33% 15% dose reduction. This demonstrates that a 33% 15% increase in image noise is feasible without being perceived, indicating potential for 33% 15% dose reduction without compromising patient care. / Funded in part by Philips Healthcare, the Netherlands. Part of this work has been performed in the project PANORAMA, co-funded by grants from Belgium, Italy, France, the Netherlands, and the United Kingdom, and the ENIAC Joint Undertaking.

Page generated in 0.0753 seconds