• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 71
  • 71
  • 22
  • 18
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Substrate specificity of the Trm10 m1R9 tRNA methyltransferase family

Howell, Nathan W. 02 October 2019 (has links)
No description available.
12

Activity-based Functional Annotation of Unknown Proteins: HAD-like hydrolases from E. coli and S. cerevisiae

Kuznetsova, Ekaterina 18 February 2010 (has links)
In all sequenced genomes, a large fraction of predicted genes encodes proteins of unknown biochemical function and up to 15% of the genes with ‘‘known’’ function are mis-annotated. Several global approaches are being employed to predict function, including sequence similarity searches, analysis of gene expression, protein interaction, and protein structure. Enzymes comprise a group of target proteins that require experimental characterization for accurate functional annotations. Here I applied enzyme genomics to identify new enzymes by screening individually purified proteins for enzymatic activity under relaxed reaction conditions, which allowed me to identify the subclass or sub-subclasses of enzymes to which the unknown protein belongs. Further biochemical characterization of proteins was facilitated by the application of secondary screens with natural substrates (substrate profiling). Application of general enzymatic screens and substrate profiling greatly sped up the identification of biochemical function of unknown proteins and the experimental verification of functional predictions produced by other functional genomics approaches. As a test case, I used this approach to characterize the members of the haloacid dehalogenase (HAD)-like hydrolase superfamily, which consists mainly of uncharacterized enzymes, with a few members shown to possess phosphatase, beta-phosphoglucomutase, phosphonatase, and dehalogenase activities. Low sequence similarity between the members of the HAD superfamily precludes the computational prediction of their substrates and functions. Using a representative set of 80 phosphorylated substrates I characterized the phosphatase activities of 21 soluble HADs from Escherichia coli and seven soluble HADs from Saccharomyces cerevisiae. E. coli HADs show broad and overlapping substrate specificity against a wide range of phosphorylated metabolites. The yeast enzymes were more specific, and one protein also showed protein phosphatase activity. Comparison of HAD substrate profiles from two model organisms showed several “functional niches” that are occupied by HADs, which include hydrolysis of nucleotides, phosphoglycolate, phosphoserine, and pyridoxal phosphate. I proposed the cellular function for a number of HADs from both organisms based on substrate specificities. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, E. coli YniC.
13

Studies on the Differential Specificity of Protein Kinases and Its Applications

Loog, Mart January 2001 (has links)
<p>Protein kinases are enzymes that catalyse the phosphoryl transfer from the g-phosphate of ATP to acceptor amino acids in proteins. The specificity of selected model protein kinases was studied at three different levels using a) novel bi-substrate-analogue inhibitors, b) synthetic peptide substrates and c) mutated protein substrate analogues. </p><p>A new class of protein kinase bi-substrate-analogue inhibitors was designed on the basis of adenosine-5’-carboxylic acid derivatives, where a short arginine containing peptide was attached to the 5'-carbon atom of the adenosine sugar moiety via a linker chain. These compounds showed high inhibitory potential against two basophilic protein kinases, the protein kinase A (PKA) and protein kinase C (PKC), with IC50 values in the nanomolar range, but no inhibitory activity towards the acidophilic kinases CK1 and CK2. The inhibitors were efficiently applied for affinity purification of PKA using MgATP as well as L-arginine as eluting agents. </p><p>Ca2+-dependent protein kinase (CDPK-1) was purified from maize seedlings and its substrate specificity was studied using a set of synthetic peptides. These were derived from the phosphorylatable sequence RVLSRLHS(15)VRER of maize sucrose synthase 2 (SuSy2), and a consensus sequence motif A/LXRXXSXRZR (where X denotes a position with no strict amino acid requirements and Z a position strictly not tolerating arginine) was defined from a study using arrays of systematically varied peptides attached to cellulose membrane (SPOTs<sup>TM</sup> membranes). The SuSy2 derived peptides were also found to be efficient substrates for mammalian PKC, but showed low reactivity in the case of PKA. On the basis of this peptide motif, a positionally oriented peptide library approach based on ESI-MS detection of phosphopeptides in initial velocity conditions was designed for quantitative kinetic characterization of protein kinase specificity profiles. On the basis of the obtained data an optimal peptide substrate for PKC, FRRRRSFRRR, was designed. </p><p>The specificity of protein kinase A was studied using site-directed mutagenesis in the phosphorylation site of L-type pyruvate kinase (L-PK), and comparison of the obtained data with the data from previous studies on structurally altered peptide substrates revealed that amino acid alterations in short peptide substrates cause stronger effects on the phosphorylation rate than the corresponding alterations in the protein substrate L-PK.</p>
14

Cutting Edge – Cleavage Specificity and Biochemical Characterization of Mast Cell Serine Proteases

Karlson, Ulrika January 2003 (has links)
<p>It is well established that mast cells (MC) are key players in airway pathologies such as allergic asthma, but they are also known to contribute to host defense and tissue remodeling. MC serine proteases are the major protein components of mast cell granules and accordingly, are most likely involved in many aspects of MC function. Two major groups of MC serine proteases have been described; chymases, which cleave a target preferentially after aromatic amino acids, and tryptases, which cleave preferentially after positively charged residues. Biochemical characterization of these proteases is a first step towards understanding their contribution to MC function. One of the issues addressed in this thesis is the target specificity of two rodent MC chymases, rat mast cell protease (rMCP)-4 and rMCP-5. The substrate specificity was analyzed using a substrate phage display technique, in which a large library of peptide substrates is screened simultaneously in a single reaction. The substrate analysis revealed that rMCP-4 displays very stringent substrate specificity, with striking preference for two subsequent aromatic amino acids N-terminal of the cleavage site. This chymase therefore holds a substrate recognition profile clearly distinct from other chymases. Database searches using the generated peptide sequence identified several interesting potential targets for rMCP-4, such as the FcγRIII and the TGFβ receptor. The phage display technique was also used to analyze the substrate specificity of rMCP-5. rMCP-5 is the rat chymase most closely related in sequence to human chymase. Interestingly, rMCP-5, unlike human chymase, was shown to hydrolyze substrates after small aliphatic amino acids, but not after aromatic residues. rMCP-5 and human chymase might therefore have different biological functions. Thus, studies of cleavage specificity can be a successful approach both to elucidate subtle differences in specificity of closely related proteases, as well as to identify new biological targets for a protease.</p><p>The MC tryptases contribute to the pro-inflammatory activities of the MC. To assess the requirements for activation and stability of a mouse tryptase, mMCP-6, recombinant mMCP-6 protein was produced in mammalian cells. A low pH (<6.5), as well as a negatively charged proteoglycan, e.g. heparin, were shown to be necessary both to obtain and maintain activity. With this in mind, heparin antagonists were studied for their potential to inhibit mMCP-6 and human tryptase. Indeed, the heparin antagonists were shown to be highly efficient tryptase inhibitors. Thus, heparin antagonists might be promising candidates to attenuate inflammatory disorders, such as allergic asthma. </p>
15

Studies on the Differential Specificity of Protein Kinases and Its Applications

Loog, Mart January 2001 (has links)
Protein kinases are enzymes that catalyse the phosphoryl transfer from the g-phosphate of ATP to acceptor amino acids in proteins. The specificity of selected model protein kinases was studied at three different levels using a) novel bi-substrate-analogue inhibitors, b) synthetic peptide substrates and c) mutated protein substrate analogues. A new class of protein kinase bi-substrate-analogue inhibitors was designed on the basis of adenosine-5’-carboxylic acid derivatives, where a short arginine containing peptide was attached to the 5'-carbon atom of the adenosine sugar moiety via a linker chain. These compounds showed high inhibitory potential against two basophilic protein kinases, the protein kinase A (PKA) and protein kinase C (PKC), with IC50 values in the nanomolar range, but no inhibitory activity towards the acidophilic kinases CK1 and CK2. The inhibitors were efficiently applied for affinity purification of PKA using MgATP as well as L-arginine as eluting agents. Ca2+-dependent protein kinase (CDPK-1) was purified from maize seedlings and its substrate specificity was studied using a set of synthetic peptides. These were derived from the phosphorylatable sequence RVLSRLHS(15)VRER of maize sucrose synthase 2 (SuSy2), and a consensus sequence motif A/LXRXXSXRZR (where X denotes a position with no strict amino acid requirements and Z a position strictly not tolerating arginine) was defined from a study using arrays of systematically varied peptides attached to cellulose membrane (SPOTsTM membranes). The SuSy2 derived peptides were also found to be efficient substrates for mammalian PKC, but showed low reactivity in the case of PKA. On the basis of this peptide motif, a positionally oriented peptide library approach based on ESI-MS detection of phosphopeptides in initial velocity conditions was designed for quantitative kinetic characterization of protein kinase specificity profiles. On the basis of the obtained data an optimal peptide substrate for PKC, FRRRRSFRRR, was designed. The specificity of protein kinase A was studied using site-directed mutagenesis in the phosphorylation site of L-type pyruvate kinase (L-PK), and comparison of the obtained data with the data from previous studies on structurally altered peptide substrates revealed that amino acid alterations in short peptide substrates cause stronger effects on the phosphorylation rate than the corresponding alterations in the protein substrate L-PK.
16

Cutting Edge – Cleavage Specificity and Biochemical Characterization of Mast Cell Serine Proteases

Karlson, Ulrika January 2003 (has links)
It is well established that mast cells (MC) are key players in airway pathologies such as allergic asthma, but they are also known to contribute to host defense and tissue remodeling. MC serine proteases are the major protein components of mast cell granules and accordingly, are most likely involved in many aspects of MC function. Two major groups of MC serine proteases have been described; chymases, which cleave a target preferentially after aromatic amino acids, and tryptases, which cleave preferentially after positively charged residues. Biochemical characterization of these proteases is a first step towards understanding their contribution to MC function. One of the issues addressed in this thesis is the target specificity of two rodent MC chymases, rat mast cell protease (rMCP)-4 and rMCP-5. The substrate specificity was analyzed using a substrate phage display technique, in which a large library of peptide substrates is screened simultaneously in a single reaction. The substrate analysis revealed that rMCP-4 displays very stringent substrate specificity, with striking preference for two subsequent aromatic amino acids N-terminal of the cleavage site. This chymase therefore holds a substrate recognition profile clearly distinct from other chymases. Database searches using the generated peptide sequence identified several interesting potential targets for rMCP-4, such as the FcγRIII and the TGFβ receptor. The phage display technique was also used to analyze the substrate specificity of rMCP-5. rMCP-5 is the rat chymase most closely related in sequence to human chymase. Interestingly, rMCP-5, unlike human chymase, was shown to hydrolyze substrates after small aliphatic amino acids, but not after aromatic residues. rMCP-5 and human chymase might therefore have different biological functions. Thus, studies of cleavage specificity can be a successful approach both to elucidate subtle differences in specificity of closely related proteases, as well as to identify new biological targets for a protease. The MC tryptases contribute to the pro-inflammatory activities of the MC. To assess the requirements for activation and stability of a mouse tryptase, mMCP-6, recombinant mMCP-6 protein was produced in mammalian cells. A low pH (&lt;6.5), as well as a negatively charged proteoglycan, e.g. heparin, were shown to be necessary both to obtain and maintain activity. With this in mind, heparin antagonists were studied for their potential to inhibit mMCP-6 and human tryptase. Indeed, the heparin antagonists were shown to be highly efficient tryptase inhibitors. Thus, heparin antagonists might be promising candidates to attenuate inflammatory disorders, such as allergic asthma.
17

Structure Based Study of CA SPASE-3 and D-Arginine Dehydrogenase

Fu, Guoxing 07 December 2012 (has links)
Caspases are important players in programmed cell death. Normal activities of caspases are critical for the cell life cycle and dysfunction of caspases may lead to the development of cancer and neurodegenerative diseases. They have become a popular target for drug design against abnormal cell death. In this study, the recognition of P5 position in substrates by caspase-3, -6 and -7 has been investigated by kinetics, modeling and crystallography. Crystal structures of caspase-3 and -7 in complexes with substrate analog inhibitor Ac-LDESD-CHO have been determined at resolutions of 1.61 and 2.45 Å, respectively, while a model of caspase-6/LDESD is constructed. Enzymatic study and structural analysis have revealed that Caspase-3 and -6 recognize P5 in pentapeptides, while caspase-7 lacks P5-binding residues. D-arginine dehydrogenase catalyzes the flavin-dependent oxidative deamination of D-amino acids to the corresponding imino acids and ammonia. The X-ray crystal structures of DADH and its complexes with several imino acids were determined at 1.03-1.30 Å resolution. The DADH crystal structure comprises a product-free conformation and a product-bound conformation. A flexible loop near the active site forms an “active site lid” and may play an essential role in substrate recognition. The DADH Glu87 forms an ionic interaction with the side chain of iminoarginine, suggesting its importance for DADH preference of positively charged D-amino acids. Comparison of the kinetic data of DADH activity on different D-amino acids and the crystal structures demonstrated that this enzyme is characterized by relatively broad substrate specificity, being able to oxidize positively charged and large hydrophobic D-amino acids bound within a flask-like cavity. Understanding biology at the system level has gained much more attention recently due to the rapid development in genome sequencing and high-throughput measurements. Current simulation methods include deterministic method and stochastic method. Both have their own advantages and disadvantages. Our group has developed a deterministic-stochastic crossover algorithm for simulating biochemical networks. Simulation studies have been performed on biological systems like auto-regulatory gene network and glycolysis system. The new system retains the high efficiency of deterministic method while still reflects the random fluctuations at lower concentration.
18

Variability in CYP3A expression and metabolism : influence of genetics and probe substrate selection /

Lin, Yvonne S., January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 189-202).
19

The Structure and Function Study of Three Metalloenzymes That Utilize Three Histidines as Metal Ligands

Chen, Yan 19 November 2013 (has links)
The function of the metalloenzymes is mainly determined by four structural features: the metal core, the metal binding motif, the second sphere residues in the active site and the electronic statistics. Cysteamine dioxygenase (ADO) and cysteine dioxygenase (CDO) are the only known enzymes that oxidize free thiol containing molecules in mammals by inserting of a dioxygen molecue. Both ADO and CDO are known as non-heme iron dependent enzymes with 3-His metal binding motif. However, the mechanistic understanding of both enzymes is obscure. The understanding of the mechanistic features of the two thiol dioxygenases is approached through spectroscopic and metal substitution in this dissertation. Another focus of the dissertation is the understanding of the function of a second sphere residue His228 in a 3-His-1-carboxyl zinc binding decarboxylase α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD). ACMSD catalyzes the decarboxylation through a hydrolase-like mechanism that is initialized by the deprotonation of metal bounded water molecule. Our study reveled that the second sphere residue His228 is responsible for the water deprotonation through hydrogen bonding. The spectroscopic and crystallographic data showed the H228Y mutation binds ferric iron instead of native zinc metal and the active site water is replaced by the Tyr228 residue ligation. Thus, we concluded that, H228Y not only plays a role of stabilizing and deprotonating the active site water but also is an essential residue on metal selectivity.
20

Investigating the substrate specificity of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P) synthase

Tran, David January 2011 (has links)
The shikimate pathway is a biosynthetic pathway that is responsible for producing a variety of organic compounds that are necessary for life in plants and microorganisms. The pathway consists of seven enzyme catalysed reactions beginning with the condensation reaction between D-erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP) to give the seven-carbon sugar DAH7P. This thesis describes the design, synthesis and evaluation of a range of alternative non-natural four-carbon analogues of E4P (2- and 3-deoxyE4P, 3-methylE4P, phosphonate analogues of E4P) to probe the substrate specificity of different types of DAH7P synthases [such as Mycobacterium tuberculosis (a type II DAH7PS), Escherichia coli (a type Ialpha DAH7PS) and Pyrococcus furiosus (a type Ibeta DAH7PS)].

Page generated in 0.1048 seconds