• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 4
  • 1
  • Tagged with
  • 21
  • 11
  • 10
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Röntgenstrukturanalyse verschiedener humaner Tryptasen, ihre funktionelle Charakterisierung und bifunktionale Inhibition

Marquardt, Ulf. January 2002 (has links) (PDF)
München, Techn. Univ., Diss., 2002.
2

Peanut allergy : a prospective study of thresholds, co-factors, mediators and severity

Dua, Shelley January 2018 (has links)
Peanut allergy is a public health concern which affects a significant proportion of the population. Accidental exposure to peanut can cause severe and fatal reactions in peanut allergic individuals and currently their only safeguard is to practise careful avoidance. Identification and protection of at-risk members of the allergic population is critical in managing this life-threatening condition. This thesis produces key data to enable this. A prospective study was performed on 60 peanut allergic participants to determine thresholds of reactivity to peanut using oral challenges with incrementally increasing amounts of peanut protein. Following a double-blind placebo-controlled peanut challenge, participants received three further peanut challenges, two with co-factors: sleep deprivation and exercise, and one without. Severity was measured using a numerical scale derived from symptoms and serum tryptase was measured at each challenge. A total of 187 challenges were performed. Findings were that the median amount of peanut protein which induces a reaction in 10% of the population (ED10) was 12.3mg (95% CI 7.3,20.4) equivalently this suggests that 90% of the allergic population will not react to doses below this level. Both sleep deprivation and exercise have a significant effect on lowering reaction threshold (ED10), by 5 times and 2.5 times respectively. Separately there is a reduction in threshold with successive challenges. Co-factors also significantly increased symptom severity during challenge reactions. In particular sleep deprivation significantly increased the severity of gastrointestinal symptoms suggesting that a stressful stimulus may affect intestinal permeability. Evidence was provided for the importance of asthma as a risk factor which increased the severity of respiratory symptoms during reaction. Using a novel visual analogue scale for measuring the participant’s perception of severity, a poor correlation was observed between the participant’s perception of the reaction and the overall numerical severity score, suggesting that participants misperceive severe symptoms. This thesis provides the first data showing that symptom patterns in repeated challenges show a high degree of homogeneity within individuals, but importantly that this symptom homogeneity is also observed across individuals. Lastly the utility of serum tryptase in identifying food allergic reactions has been disputed previously. This thesis provides evidence of its value and identifies a rise cut-off of 30% as being diagnostic of a food allergic reaction, but cautions that acute levels must be compared with baseline as this rise may occur within the normal range.
3

Röntgenkristallographische Analyse von Aktivität und Faltung genetisch veränderter aI-Tryptasen biochemische Analyse des humanen Securins /

Rohr, Kerstin Barbara. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2006--München.
4

Role of mast cells in women's health and disorders of the endometrium

De Leo, Bianca January 2017 (has links)
During the normal menstrual cycle, the human endometrium undergoes extensive tissue remodelling under the influence of ovarian-derived hormones. The endometrium has well defined stromal and epithelial compartments with the former containing both a well-developed vasculature as well as a diverse population of immune cells. Mast cells (MCs) are long-lived tissue resident immune cells characterised by the presence of granules containing proteases. Mast cells have been detected in the human uterus but little is known about their regulation or the impact of steroids on their differentiation status. Recently MCs have been implicated as key players in physiological and pathological pain pathways but little is known about their role in endometrial pathologies. Endometriosis is a chronic incurable condition characterized by the presence of endometrial tissue outside the uterine cavity: women with endometriosis can suffer from a debilitating range of symptoms including chronic pain. Whilst the aetiology of endometriosis is uncertain, close proximity between MCs and nerves has implicated them in aberrant activation of pain pathways. The aims of the current project were: 1. To determine the spatial and temporal location of uterine MCs and to explore their phenotype including expression of steroid receptors. 2. To explore the activation status of MCs in women with endometriosis and/or pain, 3. To explore the use of cells and mice as models to investigate the phenotype of mast cells and their regulation by steroids. Mast cell proteases tryptase and chymase were detected by RTPCR and immunohistochemistry in “full thickness” (uterine lumen to endometrial-myometrial junction) biopsies from women undergoing hysterectomy. In agreement with previous findings MCs were most abundant in the myometrium. Uterine MCs were predominantly of the classical MC subtypes: tryptasepos/chymaseneg and tryptasepos/chymasepos but a rare third subtype was also identified as tryptaseneg/chymasepos. Mast cell activation/degranulation was cycle stage dependent and for the first time their steroid receptor phenotype was identified as ERαneg/ERβpos/GRpos, suggesting potential regulation by the uterine steroid microenvironment. Studies on tissue samples from women with endometriosis revealed MCs with an altered activation status in the pelvic peritoneal wall, compared to controls, which showed an intense diffuse immunoexpression of chymase suggestive of MC activation and release of this protease during normal physiology of the peritoneum. Surprisingly, analysis of peritoneal fluids from controls, women with pain but no endometriosis, and pain with endometriosis did not detect differences in numbers of MCs or concentrations of tryptase or chymase. Analysis of peritoneal biopsies also provided the first evidence for a striking increase in immunoexpression of PAR-2, a protease-activated receptor, in women suffering from chronic pelvic pain and/or endometriosis which may provide a mechanism by which mast cell derived factors may alter pain pathways. Studies in a mouse model of endometriosis identified MCs within endometria-llike lesions and offer a platform for future studies. In vitro explorations using MCs derived from peripheral blood precursors and HMC-1, a cell line derived from a patient with MC leukaemia confirmed expression of ERβ but did not support previous studies claiming cells were ERαpos. In summary, this study has provided novel insights into the phenotype of endometrial mast cells in the normal cycling endometrium and contrasted them with those in women with endometriosis and pelvic pain. This is the first study to identify MCs as ERβpos. Further studies are required to determine whether inhibition of PAR- 2 might offer a therapeutic target in women with chronic pelvic pain.
5

Mast Cell Tryptases: Examination of Unusual Characteristics by Multiple Sequence Alignment and Molecular Modeling

Johnson, David A., Barton, Geoffrey J. 01 January 1992 (has links)
Tryptases are trypsin‐like serine proteinases found in the granules of mast cells. Although they show 40% sequence identity with trypsin and contain only 20 or 21 additional residues, tryptases display several unusual features. Unlike trypsin, the tryptases only make limited cleavages in a few proteins and are not inhibited by natural trypsin inhibitors, they form tetramers, bind heparin, and their activity on synthetic substrates is progressively inhibited as the concentration of salt increases above 0.2 M. Unique sequence features of seven tryptases were identified by comparison to other serine proteinases. The three‐dimensional structures of the tryptases were then predicted by molecular modeling based on the crystal structure of bovine trypsin. The models show two large insertions to lie on either side of the active‐site cleft, suggesting an explanation for the limited activity of tryptases on protein substrates and the lack of inhibition by natural inhibitors. A group of conserved Trp residues and a unique proline‐rich region make two surface hydrophobic patches that may account for the formation of tetramers and/or inhibition with increasing salt. Although they contain no consensus heparin‐binding sequence, the tryptases have 10–13 more His residues than trypsin, and these are positioned on the surface of the model. In addition, clustering of Arg and Lys residues may also contribute to heparin binding. Putative Asn‐linked glycosylation sites are found on the opposite side of the model from the active site. The model provides structural explanations for some to the unusual characteristics of the tryptases and a rational basis for future experiments, such as site‐directed mutagenesis.
6

Pathogenetische Untersuchungen zur Ausbildung unterschiedlicher Phänotypen und zur Vermehrung humaner Mastzellen bei Wundheilung und Urtikaria

Hermes, Barbara 04 December 2001 (has links)
Bei der Wundheilung und fibrosierenden Prozessen sowie bei der Urtikaria ist eine Mastzellvermehrung bekannt. Mastzellen (MZ) üben bei der Urtikaria eine Schlüsselfunktion aus und scheinen auch zum Bindegewebsumbau beizutragen. In humanem Narbengewebe (5-369 Tage alt) wurden MZ-Zahlen und MZ-Subpopulationen mittels Enzym- und Immunhistochemie im Vergleich zu normaler Haut untersucht. Außerdem wurden in Gewebsextrakten Aktivität und mRNA-Expression der MZ-Proteasen und in vitro ihre mitogene Wirkung auf Fibroblasten und Keratinozyten bestimmt. Zur Klärung von Mechanismen, die zur MZ-Vermehrung beitragen könnten, analysierten wir die Expression von MZ-Chemoattraktoren und MZ-Wachstumsfaktoren sowie ihrer Rezeptoren in humanem Narbengewebe (a), läsionaler und nicht-läsionaler Urtikariahaut (b) und in normaler Haut (c): SCF, c-Kit, NGF-R TrkA, NGF-R p75, GM-CSF, GM-CSF-R (a, b, c); NGF, TGF-(, TGF-(-R I, TGF-(-R II (a,c) mittels Immunhistochemie (a, b, c) und RT-PCR (a, c). Zusätzlich wurde die Expression der proentzündlichen Zytokine IL-3, -8, TNF-( untersucht (b, c). Tryptase und Chymase enthaltende MZ waren in Narben gegenüber normaler Haut signifikant vermindert ebenso wie Chymaseaktivität und -mRNA-Expression in Narbengewebsextrakten. Die Anzahl Tryptase-haltiger MZ war unverändert, obwohl Tryptaseaktivität und -mRNA in Narben vermehrt waren. Beide Proteasen erhöhten in vitro die mitogene Antwort von Fibroblasten, jedoch nicht von Keratinozyten. c-Kit+-MZ fanden sich in der mittleren und tiefen Dermis von Narben signifikant vermehrt. SCF, TGF-(, TGF-(-R I und II, NGF-R p75 und TrkA zeigten sich sowohl immunhistochemisch als auch in der RT-PCR in Narbengewebe hochreguliert im Vergleich zu normaler Haut, wohingegen NGF, GM-CSF und GM-CSF-R nur schwach exprimiert waren ohne Unterschied zwischen beiden Geweben. Mittels FACS-Analyse wurde erstmalig die Expression von TGF-(-R I und II auf isolierten Haut-MZ nachgewiesen. Im Gegensatz zu diesen Befunden waren in Urtikariagewebe SCF- und NGF-R p75-exprimierende Zellen vermindert im Vergleich zu normaler Haut. Die Zahl von c-Kit+-, NGF-R TrkA+-, GM-CSF+- und GM-CSF-R+ -Zellen zeigte sich unverändert. Hingegen war die Expression von IL-3 und TNF-( auf Endothelzellen in läsionaler und nicht-läsionaler Urtikariahaut signifikant hochreguliert. Die dargestellten Ergebnisse mit signifikanter Verminderung von Chymase- und Tryptase-haltigen MZ in humanem kutanen Narbengewebe sprechen für MZ-Degranulation nach Trauma. Nachfolgend findet sich in Narbengewebe eine Chymase--, Avidin--, Tryptase+-, c-Kit+-MZ-Subpopulation, am ehesten Folge einer Einwanderung und Proliferation von unreifen MZ oder MZ-Vorläufern, die von den vermehrt exprimierten Wachstumsfaktoren SCF und TGF-(, eventuell auch von NGF über seine vermehrt exprimierten Rezeptoren, induziert werden könnten. Neben NGF und TGF-( scheint auch SCF eine Rolle bei der Wundheilung zu spielen. Bei entzündlichen Hautkrankheiten unterschiedlicher Prägung wie Wundheilung und Urtikaria liegen offenbar verschiedenartige Regulationsmuster der MZ-Proliferation und -Differenzierung vor. Unsere Ergebnisse legen nahe, dass bei Trauma Feedbackmechanismen über Wachstumsfaktoren wie SCF, TGF-( und NGF und ihre Rezeptoren auf MZ ablaufen, bei der Urtikaria unter Mitberücksichtigung bereits bekannter Daten aus der Literatur vorzugsweise über eine Interaktion von Mast- und Endothelzellen. / In wound healing and fibrosing processes as well as in urticaria an increase of mast cells (MC) has been observed. MC are key-players in urticaria, and might also contribute to tissue repair. In human cutaneous scar tissue (5-369 days old) and normal skin MC dynamics and MC subtypes were analysed by enzyme- and immunohistochemistry. Moreover, the activity of the MC proteases in extracts of both tissues and their in vitro effect on the mitogenesis of fibroblasts and keratinocytes were assessed. To elucidate mechanisms involved in mast cell accumulation, expression of MC chemotaxins, MC growth factors and their receptors was evaluated comparing cutaneous scar tissue (a), lesional and non-lesional skin of urticaria (b) and normal skin (c): SCF, c-Kit, NGF-R TrkA, NGF-R p75, GM-CSF, GM-CSF-R (a, b, c); NGF, TGF-(, TGF-(-R I, TGF-(-R II (a,c) by immunohistochemistry (a, b, c) and by RT-PCR (a, c). Additionally, expression of proinflammatory cytokines (IL-3, -8, TNF-() was studied (b, c). Tryptase and chymase containing MC were markedly decreased in scars as well as chymase activity and mRNA expression, whereas overall numbers of tryptase containing MC did not differ from those in normal skin, although tryptase activity and mRNA expression were increased in scar extracts. Both proteases induced a dose-dependent mitogenic response in 3T3-fibroblasts, but not in HaCaT-keratinocytes. Numbers of c-Kit+ MC were significantly increased in the mid and lower dermis of scars. Furthermore, SCF, TGF-(, its receptors I and II, the NGF-R p75 and TrkA were shown to be upregulated in scars both by immunohistochemistry and by RT-PCR, while NGF, GM-CSF and the GM-CSF-R were only weakly expressed without differences between scar and normal tissue. In addition, expression of TGF-(-R I and II could be shown on isolated human skin MC by FACS-analysis. In contrast to these findings, SCF- and NGF-R p75-expressing cells in urticaria tissue were downregulated compared to normal skin. Numbers of c-Kit+, NGF-R TrkA+, GM-CSF+ and GM-CSF-R+ cells remained unchanged. However, IL-3 and TNF-( expression was upregulated on endothelial cells in lesional and non-lesional skin of urticaria. These data show that numbers of resident MCTC are very low in human cutaneous scars suggesting massive mediator release from these cells after wounding. Instead, scar tissue is populated by a chymase-, avidin-, tryptase+, c-Kit+ MC subpopulation that is reflecting most probably an immigration and / or proliferation of immature MC and their precursors which might be promoted by SCF and TGF-beta, possibly also NGF via its receptors. Next to TGF-( and NGF, also SCF seems to play a role in wound healing. Our findings suggest different regulation patterns of MC increase in inflammatory conditions of the skin. After wounding, feedback mechanisms via growth factors (SCF, TGF-(, possibly NGF) and their receptors on MC could be operative, while in urticaria in accordance with data from the literature interactions between MC and endothelial cells appear to be essential.
7

Cutting Edge – Cleavage Specificity and Biochemical Characterization of Mast Cell Serine Proteases

Karlson, Ulrika January 2003 (has links)
<p>It is well established that mast cells (MC) are key players in airway pathologies such as allergic asthma, but they are also known to contribute to host defense and tissue remodeling. MC serine proteases are the major protein components of mast cell granules and accordingly, are most likely involved in many aspects of MC function. Two major groups of MC serine proteases have been described; chymases, which cleave a target preferentially after aromatic amino acids, and tryptases, which cleave preferentially after positively charged residues. Biochemical characterization of these proteases is a first step towards understanding their contribution to MC function. One of the issues addressed in this thesis is the target specificity of two rodent MC chymases, rat mast cell protease (rMCP)-4 and rMCP-5. The substrate specificity was analyzed using a substrate phage display technique, in which a large library of peptide substrates is screened simultaneously in a single reaction. The substrate analysis revealed that rMCP-4 displays very stringent substrate specificity, with striking preference for two subsequent aromatic amino acids N-terminal of the cleavage site. This chymase therefore holds a substrate recognition profile clearly distinct from other chymases. Database searches using the generated peptide sequence identified several interesting potential targets for rMCP-4, such as the FcγRIII and the TGFβ receptor. The phage display technique was also used to analyze the substrate specificity of rMCP-5. rMCP-5 is the rat chymase most closely related in sequence to human chymase. Interestingly, rMCP-5, unlike human chymase, was shown to hydrolyze substrates after small aliphatic amino acids, but not after aromatic residues. rMCP-5 and human chymase might therefore have different biological functions. Thus, studies of cleavage specificity can be a successful approach both to elucidate subtle differences in specificity of closely related proteases, as well as to identify new biological targets for a protease.</p><p>The MC tryptases contribute to the pro-inflammatory activities of the MC. To assess the requirements for activation and stability of a mouse tryptase, mMCP-6, recombinant mMCP-6 protein was produced in mammalian cells. A low pH (<6.5), as well as a negatively charged proteoglycan, e.g. heparin, were shown to be necessary both to obtain and maintain activity. With this in mind, heparin antagonists were studied for their potential to inhibit mMCP-6 and human tryptase. Indeed, the heparin antagonists were shown to be highly efficient tryptase inhibitors. Thus, heparin antagonists might be promising candidates to attenuate inflammatory disorders, such as allergic asthma. </p>
8

Cutting Edge – Cleavage Specificity and Biochemical Characterization of Mast Cell Serine Proteases

Karlson, Ulrika January 2003 (has links)
It is well established that mast cells (MC) are key players in airway pathologies such as allergic asthma, but they are also known to contribute to host defense and tissue remodeling. MC serine proteases are the major protein components of mast cell granules and accordingly, are most likely involved in many aspects of MC function. Two major groups of MC serine proteases have been described; chymases, which cleave a target preferentially after aromatic amino acids, and tryptases, which cleave preferentially after positively charged residues. Biochemical characterization of these proteases is a first step towards understanding their contribution to MC function. One of the issues addressed in this thesis is the target specificity of two rodent MC chymases, rat mast cell protease (rMCP)-4 and rMCP-5. The substrate specificity was analyzed using a substrate phage display technique, in which a large library of peptide substrates is screened simultaneously in a single reaction. The substrate analysis revealed that rMCP-4 displays very stringent substrate specificity, with striking preference for two subsequent aromatic amino acids N-terminal of the cleavage site. This chymase therefore holds a substrate recognition profile clearly distinct from other chymases. Database searches using the generated peptide sequence identified several interesting potential targets for rMCP-4, such as the FcγRIII and the TGFβ receptor. The phage display technique was also used to analyze the substrate specificity of rMCP-5. rMCP-5 is the rat chymase most closely related in sequence to human chymase. Interestingly, rMCP-5, unlike human chymase, was shown to hydrolyze substrates after small aliphatic amino acids, but not after aromatic residues. rMCP-5 and human chymase might therefore have different biological functions. Thus, studies of cleavage specificity can be a successful approach both to elucidate subtle differences in specificity of closely related proteases, as well as to identify new biological targets for a protease. The MC tryptases contribute to the pro-inflammatory activities of the MC. To assess the requirements for activation and stability of a mouse tryptase, mMCP-6, recombinant mMCP-6 protein was produced in mammalian cells. A low pH (&lt;6.5), as well as a negatively charged proteoglycan, e.g. heparin, were shown to be necessary both to obtain and maintain activity. With this in mind, heparin antagonists were studied for their potential to inhibit mMCP-6 and human tryptase. Indeed, the heparin antagonists were shown to be highly efficient tryptase inhibitors. Thus, heparin antagonists might be promising candidates to attenuate inflammatory disorders, such as allergic asthma.
9

PAPEL DO RECEPTOR TRPV1 NA NOCICEPÇÃO E NO EDMA INDUZIDO POR CRISTAIS DE URATO MONOSSÓDICO EM RATOS / ROLE OF TRPV1 ON NOCICEPTION AND EDEMA INDUCED BY MONOSODIUM URATE CRYSTALS IN RATS

Hoffmeister, Carin Gorete Hendges 14 August 2009 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / Gout is characterized by the deposition of monosodium urate (MSU) crystals. Despite being one of the most painful forms of arthritis, gout and the mechanisms responsible for its acute attacks are poorly understood. In the present study, we found that MSU caused dose-related nociception (DE50=0.04 (0.01-0.11) mg/paw) and edema (DE50=0.08 (0.04-0.16) mg/paw) when injected into the hind paw of rats. Treatment with the selective TRPV1 receptor antagonist SB366791 largely inhibited nociceptive and edematogenic responses to MSU. Moreover, the desensitization of capsaicin-sensitive afferent fibers as well as the pretreatment with the tachykinin NK1 receptor antagonist RP 67580 also significantly reduced MSU-induced nociception and edema. Once MSU was found to induce mast cell stimulation, we investigated the participation of these cells on MSU effects. Prior degranulation of mast cells by repeat treatment with compound 48/80 decreased MSU-induced nociception and edema or histamine and serotonin levels in the injected tissue. Moreover, pretreatment with the mast cell membrane stabilizer cromolyn effectively inhibited nociceptive and edematogenic responses to MSU. MSU induced a release of histamine, serotonin and tryptase in the injected tissue, confirming mast cell degranulation Furthermore, the antagonism of histaminergic H1 and serotoninergic receptors decreased the edema, but not the nociception, of MSU. Finally, the inhibition of tryptase activity was capable of largely reducing either MSU-induced nociception or edema. Collectively, the present findings demonstrate that MSU produces a nociceptive and edematogenic response mediated by TRPV1 receptor activation and mast cell degranulation. / A gota é caracterizada pela deposição de cristais de urato monossódico (MSU) nas articulações. Apesar de ser um dos mais dolorosos tipos de artrite, os mecanismos responsáveis pela indução da dor durante os ataques agudos de gota são pouco entendidos. No presente estudo, objetivamos investigar o papel do receptor TRPV1 na nocicepção e edema induzidos por cristais de MSU em ratos. Assim, demonstramos que o MSU causa nocicepção (DE50=0.04 (0.01-0.11) mg/pata) e edema dependentes da dose (DE50=0.08 (0.04-0.16) mg/pata) quando injetado na pata dos ratos. O tratamento com o antagonista seletivo do receptor vanilóide TRPV1 SB 366791 inibiu significativamente as respostas nociceptiva e edematogênica causadas pelo MSU. De maneira semelhante, a dessensibilização de fibras aferentes sensíveis a capsaicina bem como o tratamento com o antagonista do receptor para taquicinina NK1 RP67580 também reduziram significativamente a nocicepção e o edema induzidos pelo MSU. Sabendo que estudos prévios demonstraram que MSU induz a estimulação de mastócitos, nós investigamos a participação destas células nos efeitos do MSU. A desgranulação prévia de mastócitos por tratamento repetido com o composto 48/80 reduziu a nocicepção e o edema induzidos pelo MSU assim como os níveis de histamina e serotonina no tecido injetado. Adicionalmente, o tratamento com o estabilizador de membrana de mastócitos cromolina, reduziu efetivamente as respostas nociceptivas e edematogênicas ao MSU. A administração de MSU induziu a liberação de histamina, serotonina e triptase no tecido injetado, confirmando a desgranulação mastocitária. Além disso, o antagonismo de receptores histaminérgicos H1 e serotoninérgicos, reduziram o edema, mas não a nocicepção causados pelo MSU. Finalmente, a inibição da atividade da triptase foi capaz de reduzir amplamente a nocicepção e o edema induzidos pelo MSU. Coletivamente, nossos resultados demonstram que o MSU produz uma resposta nociceptiva e edematogênica mediada pela ativação do receptor TRPV1 e pela desgranulação de mastócitos.
10

Osteoporose bei Mastozytose / Eine Zusammenstellung universitätsmedizinischer Daten / osteoporosis in mastocyrosis / a collection of university medical data

Reid, Sebastian 02 August 2017 (has links)
No description available.

Page generated in 0.049 seconds