• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude du dialogue moléculaire entre les partenaires de la symbiose ectomycorhizienne : implication d'une subtilase sécrétée par le champignon Hebeloma cylindrosporum / Study of the molecular dialogue between the partners of the ectomycorrhizal symbiosis : involvement of extracellular subtilase of the fungus Hebeloma cylindrosporum

Perraud, Marie 10 December 2013 (has links)
L'établissement de toute symbiose repose sur un dialogue moléculaire hautement régulé entre les deux partenaires. Une approche par génétique inverse a été utilisée pour identifier des gènes fongiques jouant un rôle clé dans le dialogue moléculaire entre les partenaires de la symbiose ectomycorhizienne. La caractérisation phénotypique et moléculaire d'un mutant non-mycorhizien du champignon Hebeloma cylindrosporum a montré qu'il présente une insertion de l'ADN-T mutagène dans le promoteur de la subtilase HcSbt1. Le fait que ce mutant soit incapable de coloniser les racines de la plante hôte Pinus pinaster, indique que HcSbt1 joue un rôle crucial dans le dialogue moléculaire précoce entre les partenaires de la symbiose ectomycorhizienne. Lors de la formation des mycorhizes, HcSbt1 est réprimé dès le contact avec les racines, avant même la différenciation de toute structure symbiotique. La répression se maintient tant que dure la symbiose. Ceci suggère que HcSbt1 pourrait inhiber le processus symbiotique. Sa répression serait un prérequis à la formation des mycorhizes. L'analyse par Western Blot et séquençage du sécrétome du champignon a montré que HcSbt1 est exocellulaire. Elle pourrait inhiber l'établissement de la symbiose en dégradant/activant/inactivant des protéines exocellulaires de la plante ou/et du champignon. La comparaison des secrétomes de la souche sauvage et de la souche mutante a montré que HcSbt1 peut dégrader de petits peptides exocellulaires. Notre hypothèse est que cette subtilase inhibe l'établissement de la symbiose en dégradant des petits peptides exocellulaires qui seraient des effecteurs / The establishment of any symbiosis relies on a tightly regulated molecular dialogue between symbiotes. A reverse genetic approach was used to identify fungal genes playing a key role in the molecular dialogue between the partners of the ectomycorrhizal symbiosis. A non-mycorrhizal mutant of the fungus Hebeloma cylindrosporum has a single insertion of mutagenic T-DNA in the promoter of the subtilase HcSbt1. This mutant was unable to colonize Pinus pinaster roots, indicating that HcSbt1 plays a crucial role in the early molecular cross-talk between partners of the ectomycorrhizal symbiosis. During symbiotic interaction, HcSbt1 was repressed upon contact with the roots, even before the differentiation of any symbiotic structure. This repression was stable throughout the whole symbiotic process, suggesting that HcSbt1 could inhibit symbiotic structure differentiation. Subsequently, HcSbt1 repression would be a prerequisite for mycorrhiza differentiation. Western Blot analysis together with fungal secretome sequencing showed that HcSbt1 is extracellular. It could inhibit the symbiosis establishment by degrading / activating / inactivating extracellular proteins from plant and/or fungal origin. The comparison of wild-type and mutant secretomes showed that HcSbt1 could degrade small extracellular peptides. Based on this, we hypothesized that this subtilase could inhibit symbiosis establishment by degrading small extracellular peptides that would be effectors
2

A protease of the subtilase family negatively regulates plant defence through its interaction with the Arabidopsis transcription factor AtMYB30

Buscaill, Pierre 12 February 2016 (has links) (PDF)
Plants defence responses are often associated with the development of the so-called hypersensitive response (HR), a form of PCD that confines the pathogen to the infection site. The sharp boundary of the HR suggests the existence of efficient mechanisms that control cell death and survival. The Arabidopsis transcription factor AtMYB30 positively regulates plant defence and HR responses by enhancing the synthesis of sphingolipid-containing Very Long Chain Fatty Acids (VLCFA) after bacterial infection. The activity of AtMYB30 is tightly controlled inside plant cells through protein-protein interactions and post-translational modifications. During my PhD, we identified a protease of the subtilase family (AtSBT5.2) as a AtMYB30-interacting partner. Interestingly, we have shown that the AtSBT5.2 transcript is alternatively spliced, leading to the production of two distinct gene products that encode either a secreted [AtSBT5.2(a)] or an intracellular [AtSBT5.2(b)] protein. The specific interaction between AtMYB30 and AtSBT5.2(b), but not AtSBT5.2(a), leads to AtMYB30 specific retention outside of the nucleus in small intracellular vesicles. atsbt5.2 Arabidopsis mutant plants, in which both AtSBT5.2(a) and AtSBT5.2(b) expression was abolished, displayed enhanced HR and defence responses. The fact that this phenotype is abolished in an atmyb30 mutant background suggests that AtSBT5.2 is a negative regulator of AtMYB30-mediated disease resistance. Importantly, overexpression of the AtSBT5.2(b), but not the AtSBT5.2(a), isoform in the atsbt5.2 mutant background reverts the phenotypes displayed by atsbt5.2 mutant plants, suggesting that AtSBT5.2(b) specifically represses AtMYB30-mediated defence.
3

A protease of the subtilase family negatively regulates plant defence through its interaction with the Arabidopsis transcription factor AtMYB30 / Une protéase de la famille des subtilases régule négativement les réactions de défense à travers son interaction avec le facteur de transcription d’Arabidopsis AtMYB30

Buscaill, Pierre 12 February 2016 (has links)
Les réactions de défense végétales sont souvent associées au développement de la réponse hypersensible (HR), une forme de mort cellulaire programmée qui confine l'agent pathogène au niveau du site d'infection. La frontière nette de la HR suggère l'existence de mécanismes efficaces qui contrôlent la frontière entre mort cellulaire et survie. Le facteur de transcription d'Arabidopsis AtMYB30 régule positivement la HR et les réponses de défense de la plante en augmentant la synthèse des acides gras à très longue chaîne (VLCFA) après infection bactérienne. L'activité d’AtMYB30 est étroitement contrôlée à l'intérieur des cellules végétales par des interactions protéine-protéine et des modifications post-traductionnelles. Au cours de mes travaux de thèse, nous avons identifié une protéase de la famille des subtilases (AtSBT5.2) en tant que partenaire protéique d’AtMYB30. Chose intéressante, nous avons montré que le transcrit d’AtSBT5.2 est épissée de façon alternative, conduisant à la production de deux produits de gènes distincts codant soit pour une isoforme sécrétée [AtSBT5.2 (a)] soit une isoforme intracellulaire [AtSBT5.2 (b)]. L'interaction spécifique d’AtMYB30 avec AtSBT5.2(b), mais pas avec AtSBT5.2(a), conduit à une rétention d’AtMYB30 à l'extérieur du noyau au sein de petites vésicules intracellulaires. Des plantes d’Arabidopsis mutantes atsbt5.2, ne montrant ni expression d’AtSBT5.2(a) ni d’AtSBT5.2(b), présentent des réactions de défense et de HR accrues. Ce phénotype étant abolie dans un fond génétique mutant atmyb30, AtSBT5.2 est donc un régulateur négatif de la résistance aux maladies induites par AtMYB30. Fait important, la surexpression de l’isoforme AtSBT5.2(b), mais pas celle de l’isoforme AtSBT5.2(a), dans le fond mutant atsbt5.2 rétablit les phénotypes présentés par les plantes mutantes atsbt5.2, ce qui suggère qu’AtSBT5.2(b) réprime spécifiquement la réponse de défense induite par AtMYB30. / Plants defence responses are often associated with the development of the so-called hypersensitive response (HR), a form of PCD that confines the pathogen to the infection site. The sharp boundary of the HR suggests the existence of efficient mechanisms that control cell death and survival. The Arabidopsis transcription factor AtMYB30 positively regulates plant defence and HR responses by enhancing the synthesis of sphingolipid-containing Very Long Chain Fatty Acids (VLCFA) after bacterial infection. The activity of AtMYB30 is tightly controlled inside plant cells through protein-protein interactions and post-translational modifications. During my PhD, we identified a protease of the subtilase family (AtSBT5.2) as a AtMYB30-interacting partner. Interestingly, we have shown that the AtSBT5.2 transcript is alternatively spliced, leading to the production of two distinct gene products that encode either a secreted [AtSBT5.2(a)] or an intracellular [AtSBT5.2(b)] protein. The specific interaction between AtMYB30 and AtSBT5.2(b), but not AtSBT5.2(a), leads to AtMYB30 specific retention outside of the nucleus in small intracellular vesicles. atsbt5.2 Arabidopsis mutant plants, in which both AtSBT5.2(a) and AtSBT5.2(b) expression was abolished, displayed enhanced HR and defence responses. The fact that this phenotype is abolished in an atmyb30 mutant background suggests that AtSBT5.2 is a negative regulator of AtMYB30-mediated disease resistance. Importantly, overexpression of the AtSBT5.2(b), but not the AtSBT5.2(a), isoform in the atsbt5.2 mutant background reverts the phenotypes displayed by atsbt5.2 mutant plants, suggesting that AtSBT5.2(b) specifically represses AtMYB30-mediated defence.
4

Implication d'une subtilase dans les étapes précoces des symbioses actinorhiziennes

Svistoonoff, Sergio 18 November 2003 (has links) (PDF)
Les plantes actinorhiziennes sont des non légumineuses appartenant à 8 familles d'angiospermes qui peuvent établir une symbiose fixatrice d'azote avec l'actinomycète du sol Frankia. Cette interaction aboutit à la formation de nodules au niveau du système racinaire de la plante. Parmi les gènes qui interviennent au cours des étapes précoces de la symbiose figure Cg12, un gène isolé chez l'arbre actinorhizien Casuarina glauca qui code une protéase à sérine de la famille des subtilisines (=subtilase). L'objectif de ce travail est la poursuite de la caractérisation de ce gène à travers 4 approches :<br />(1) Une étude détaillée du profil d'expression de Cg12 a été réalisée grâce à l'utilisation de Casuarinacées transgéniques contenant des fusions transcriptionelles entre le promoteur de Cg12 et des gènes rapporteurs. Cette analyse a permis de montrer que l'expression de Cg12 est spécifiquement liée à l'infection des cellules par Frankia et qu'elle débute dès les premières étapes de la symbiose, quand Frankia pénètre dans des poils absorbants déformés. <br />(2) La protéine CG12 a été mise en évidence dans des extraits protéiques de C. glauca en utilisant des anticorps anti-CG12. Ces anticorps ont également été utilisés dans des expériences d'immunolocalisation, ce qui nous a permis de montrer que CG12 se retrouve dans le compartiment extracellulaire, au niveau des parois et du matériel polysaccharidique qui entoure Frankia. <br />(3) Nous avons introduit les fusions transcriptionelles Cg12-gène rapporteur dans la plante modèle Arabidopsis thaliana afin d'analyser les voies de transduction impliquées dans l'expression de Cg12. Cependant aucune expression des gènes rapporteurs n'a pu être détectée au cours du développement et en réponse à des traitements hormonaux. Nous avons également utilisé Arabidopsis afin de mieux comprendre le rôle d'Ara12, un gène de subtilase proche de Cg12, dont nous avons analysé le profil d'expression chez Arabidopsis.<br />(4) Nous avons étudié l'implication de subtilases dans la symbiose fixatrice d'azote entre la légumineuse Medicago truncatula et Sinorhizobium meliloti. Pour cela nous avons analysé le profil d'expression des gènes rapporteurs placés sous le contrôle du promoteur de Cg12 dans des plantes transgéniques de M. truncatula. La conservation du profil d'expression de Cg12 chez M. truncatula suggère l'existence d'une voie de transduction indépendante de celle qui est activée par les facteurs Nod. Cette voie de transduction est activée dans les deux systèmes symbiotiques en réponse à l'infection par les bactéries. Nous avons ensuite analysé le profil d'expression de plusieurs gènes de subtilases trouvés dans les banques de séquences de M. truncatula. Trois de ces gènes spécifiquement exprimés dans les nodules pourraient être des orthologues de Cg12 chez M. truncatula.
5

Characterisation of a novel subtilase Cytotoxin from Shiga Toxigenic Escherichia Coli.

Chong, Damien Christopher Chen Sau January 2009 (has links)
Subtilase cytotoxin (SubAB) is the prototype of a novel class of AB₅ cytotoxins produced by Shiga-toxigenic Escherichia coli (STEC). The A subunit (SubA) is a serine protease that cleaves the ER chaperone BiP causing cell death by a previouslyundetermined mechanism. The B subunits of AB₅toxins typically recognise host cell glycan receptors and direct the subcellular transport of the A subunit. Although the function of SubA and its intracellular substrate have been elucidated, the B subunit (SubB) is relatively uncharacterised. The subcellular trafficking pathway of SubAB was initially examined. SubAB conjugated to Oregon Green 488 (SubAB-OG) was internalised by Vero cells by 5 min, and co-localised with its ER target BiP within 30 min. When Vero cells were incubated with SubAB-OG and either Alexa Fluor 594-conjugated Cholera toxin B subunit (CtxBAF594) or Texas Red-conjugated Shiga toxin B subunit (StxB-TR), individual cells exhibited differential toxin uptake. This was shown to be cell cycle-dependent, in which, SubAB-OG was preferentially internalised by cells migrating through G1 and early S phases. In contrast, CtxB-AF594 was taken up by cells in S through M phases and by a majority of cells in G1, while StxB-TR endocytosis occurred in cells traversing G1. Fluorescent SubAB co-localised with the clathrin marker transferrin, but not with Caveolin-1 (a marker for cholesterol-associated caveolae) and was subsequently trafficked via a retrograde pathway to the TGN, Golgi and ER. The clathrin inhibitor phenylarsine oxide prevented SubAB entry and BiP cleavage in SubAB-treated Vero, HeLa and N2A cells, while cholesterol depletion did not, demonstrating that, unlike either Stx or Ctx, SubAB internalisation is exclusively clathrin-dependent. Identification of the SubB receptor was initially approached using toxin overlay assays in which Vero cell glycolipid extracts were separated by thin-layer chromatography and overlaid with SubAB. SubAB exhibited a high affinity for particular acidic species in the ganglioside fraction. However, none co-migrated with commercial glycolipid standards. SubAB-OG also exhibited an affinity for the oligosaccharide structures of chimeric LPS from GM₂ and GM₃ bacterial receptor mimic constructs in an LPS toxin overlay assay. Glycan array analysis revealed that SubB possessed a unique affinity for carbohydrate receptors with a terminal Neu5Gcα(2→3)Galβ disaccharide. Monovalent receptor analogues with distal Neu5Gc or Neu5Gcα(2→3)Galβ and highly-sialylated α₁-AGP did not prevent endocytosis of SubAB-OG, BiP cleavage or cytotoxicity in Vero cells. This indicated that SubAB has a greater affinity for the host cell receptors than the receptor analogues and may engage multiple receptors displayed on a lipid bilayer. In addition to mediating toxin binding and subcellular trafficking, CtxB and StxB can also potentiate the immune response to co-administered antigen. Accordingly, the systemic immunomodulatory properties of SubB administered by the i.p. route were assessed in mice. Using SubAA₂₇₂ as a bystander antigen, SubB significantly increased mouse anti-SubAA₂₇₂ titres to levels that were comparable to those obtained using Alum adjuvant. However, when admixed with structurally-unrelated OVA, SubB did not significantly affect anti-OVA titres whereas Alum and CtxB did. This indicated that SubB may function as a systemic carrier protein (rather than an adjuvant) for particular antigens. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1363363 / Thesis (Ph.D.) - University of Adelaide, School of Molecular and Biomedical Science, 2009
6

Crystallographic studies on a cold adapted subtilase and proteins involved in mRNA processing / Kristallographische Studien an einer kälteadaptiven Subtilase und an mRNA-Prozessierung beteiligten Proteinen

Arnórsdóttir, Jóhanna 28 April 2005 (has links)
No description available.

Page generated in 0.033 seconds