Spelling suggestions: "subject:"sugarcane bagasse"" "subject:"sugarcane lagasse""
131 |
Produção de biossurfactante por levedura utilizando fermentação em estado sólido em bagaço de cana-de-açúcar / Biosurfactant production by yeast in solid state fermentation using sugarcane bagasseLarissa Pereira Brumano 11 August 2017 (has links)
Biossurfactantes são moléculas anfifílicas produzidas por micro-organismos que possuem grande potencial na substituição de surfactantes químicos, pois apresentam maior biodegradabilidade e estabilidade. A busca por novos micro-organismos, matérias-primas e estratégias de produção é essencial para a viabilização da sua produção. Assim, a fermentação em estado sólido (FES) apresenta-se como uma tecnologia alternativa de produção, com a vantagem de evitar a formação de espuma, e a utilização de leveduras para o processo é vantajosa, pois muitas não apresentam risco de patogenicidade. O objetivo deste trabalho foi selecionar uma levedura capaz de produzir biossurfactante por FES, determinar as condições do processo, comparar com a fermentação submersa (FS), caracterizar bioquimicamente o biossurfactante e testar sua aplicação para biorremediação. Para tanto, 37 leveduras foram avaliadas quanto à produção de biossurfactante em caldo Kitamoto, por meio de testes das atividades tensoativa e emulsificante. Dessas, 17 apresentaram resultados positivos para tensoatividade, formaram emulsão estável e foram utilizadas para os testes em FES em 2 g bagaço de cana-de-açúcar e 10 mL de meio Kitamoto. Na FES, cinco leveduras apresentaram resultados positivos para tensoatividade e quatro formaram emulsão estável. Dentre essas, a Aureobasidium pullulans LB 83 foi selecionada por apresentar resultado positivo para tensoatividade, índice de emulsificação acima de 50% e estabilidade da emulsão. Foram testadas diferentes fontes de carbono, sendo a sacarose aquela que apresentou melhores resultados (6,0 cm de tensoatividade no teste de espalhamento da gota (Ta) e 8,3x10-2 cm/h de produtividade em tensoatividade (QTa)). A adição dos indutores glicerol (0 a 6 g/L) e óleo de soja (0 a 10 g/L) não apresentou efeito significativo para o processo. Também foi estudada a influência da aeração (0,1 a 1,1 h-1) e da concentração de sacarose (20 a 80 g/L) utilizando planejamento fatorial composto de face centrada realizado em reator de tanque agitado. O uso das variáveis no nível mais alto aumentou a produção de biossurfactante (8,05 cm (Ta) e 8,4x10-2 cm/h (QTa). As condições adequadas da FES foram avaliadas em frascos Erlenmeyer (50 mL) com 2 g de bagaço (suporte inerte) em um planejamento 24, tendo como variáveis tamanho médio das partículas de bagaço (0,6 a 1,8 mm), volume de meio adicionado (8 a 12 mL), concentração celular inicial (1x105 a 1x107 cel/mL) e volume para extração (15 a 25 mL). O tamanho das partículas apresentou efeito positivo e o volume de meio possuiu efeito negativo na concentração de biossurfactante. As demais variáveis não apresentaram efeitos significativos. Assim, as condições definidas foram 1,18 mm tamanho médio de partícula, 1x106 cel/mL concentração celular, 8 mL meio de cultura e 15 mL volume de extração, resultando na obtenção de 2,06 g/L de biossurfactante. Não houve diferença significativa entre o rendimento da condição otimizada na FES e a FS. A utilização de butanona para a extração mostrou-se vantajosa e o biossurfactante foi caracterizado como poliol lipídeo. Sua aplicação para biorremediação foi avaliada e apresentou maiores recuperações de petróleo da areia contaminada (73,7 e 78,4%) que as obtidas por dodecil sulfato sódico (58,0 e 75,0%), nas concentrações de 0,1 e 0,5 % respectivamente. Concluiu-se que a levedura A. pullulans LB 83 foi capaz de produzir biossurfactante por FES e esse processo apresenta destacada potencialidade, podendo servir como conhecimento para futuros estudos visando sua implementação em escalas maiores. / Biosurfactants are amphiphilic molecules produced by microorganisms that have great potential as substitute for chemical surfactants, since they present higher biodegradability and stability. The search for new microorganisms, raw materials and production strategies are essential for their production viability. Thus, solid state fermentation (FES) is presented as an alternative production technology, with the advantage of no foam formation, and the selection of yeasts for the process is favorable, since many of them do not present risk of pathogenicity. The objective of this work was to select a yeast able to produce biosurfactant by FES, to determine process conditions, to compare the results obtained by FES with the process of submerged fermentation (FS), to characterize biochemically the biosurfactant and to test its application for bioremediation. For this, 37 yeasts were evaluated for biosurfactant production in Kitamoto broth, using tests of tensoactive and emulsifying activities. 17 presented positive results for tensoativity and were able to form stable emulsion, and were used in tests of FES using 2 g of sugarcane bagasse and 10 mL of Kitamoto medium. In FES, five yeasts presented positive results for tensoativity and four were able to form a stable emulsion. Among these, Aureobasidium pullulans LB 83 was selected due to its positive results for tensoativity, emulsification index above 50% and emulsion stability. Different carbon sources were tested for biosurfactant production by A. pullulans LB 83 and sucrose presented the best results (6.0 cm of tensoativity in drop spreading test (Ta) and 8.3x10-2 cm/h of tensoactivity productivity (QTa). The addition of the inductors glycerol (0 to 6 g/L) and soybean oil (0 to 10 g/L) had no significant effect on the biosurfactant production process. The influence of aeration (0.1 to 1.1 h-1) and sucrose concentration (20 to 80 g/L) were also studied using factorial composite face centered design in a stirred tank reactor. The use of the variables at the highest level increased biosurfactant production (8.05 cm (Ta) and 8.4 x 10-2 cm/h (QTa). The appropriate conditions for FES process were evaluated in Erlemeyers flasks (50 mL) with 2 g of sugarcane bagasse (inert support) in a factorial design 24. The variable used were bagasse particles size (0.6 to 1.8 mm), medium volume added (8 to 12 mL), initial cell concentration (1x105 to 1x107 cell/mL) and water volume for extraction (15 to 25 mL). Particle size had a positive effect and medium volume had a negative effect on biosurfactant concentration. The other variables did not present significant effects. Thus, the defined conditions were 1.18 mm of particle size, 1x106 cell/mL of initial cell concentration, addition of 8 mL of culture medium and 15 mL for extraction volume (2.06 g/L of biosurfactant was obtained). There was no significant difference between the performance of the optimized condition in FES and FS. The use of butanone for the extraction was advantageous and the biosurfactant was characterized as polyol lipid. Its application for bioremediation was evaluated, exhibiting a higher recovery of contaminated sand oil (73.7 and 78.4%) than those obtained by sodium dodecyl sulphate (58.0 and 75.0%), at concentrations of 0.1 and 0.5% respectively. For these results, it was concluded that the yeast A. pullulans LB 83 was able to produce biosurfactant by FES and this process has outstanding potential, and can be used for future studies aimed at implementation of larger scales.
|
132 |
Produção de celulases por fungos de ambiente marinho e terrestre para uso na hidrólise do bagaço de cana-de-açúcar e produção de 2,3-butanodiol pela bactéria Serratia marcescens a partir de glicose e glicerol / Cellulase production by terrestrial and marine-derived fungi for application in sugarcane bagasse hydrolysis and 2,3-butanediol production by the bacterium Serratia marcescens from glucose and glycerolDarlisson de Alexandria Santos 13 March 2017 (has links)
O Capítulo 1 descreve a produção de celulases por 4 linhagens fúngicas de ambiente marinho (Aspergillus sydowii CBMAI 934, A. sydowii CBMAI 935, Penicillium citrinum CBMAI 1186 e Mucor racemosus CBMAI 847) e uma linhagem de ambiente terrestre (Aspergillus sp. CBMAI 1198) cultivados em meio sólido composto por farelo de trigo (5 g) e solução de peptona (0,75 g.L-1) enriquecida com sais inorgânicos. Foram realizadas otimizações da temperatura, pH inicial e umidade do meio de cultura das linhagens obtendo-se maiores atividades celulolíticas na faixa de temperatura entre 25-35 °C, com exceção do fungo A. sydowii CBMAI 935 que foi de 40 °C, e valores diferentes de pH ótimo, desde condições acídicas até alcalinas, bem como valores diferentes de teor de umidade ótima. Quando avaliou-se a influência do pH, da temperatura e do volume de extrato enzimático durante a hidrólise do papel de filtro cada conjunto de celulases produzidas apresentou pontos ótimos diferentes entre elas, e em alguns casos, dois valores ótimos de pH e temperatura. As celulases produzidas nas condições ótimas determinadas foram aplicadas na hidrólise da celulose do bagaço da cana-de-açúcar pré-tratado usando-se 10 U FPU/g de bagaço de cana-de-açúcar. As celulases dos fungos Aspergillus sp. CBMAI 1198 e A. sydowii CBMAI 934 apresentaram a maior capacidade para hidrolisar o bagaço da cana-de-açúcar pré-tratado, 75% e 78% de degradação do material lignocelulósico, respectivamente. No Capítulo 2 foi avaliada a capacidade de 6 bactérias isoladas de turfeira (Bacillus subtilis LQOB-SE1, B. coagulans LQOB-SE2, B. pumilus LQOB-SE3, Brevibacillus brevis LQOB-SE4, Lysinibacillus sp. LQOB-SE5 e Serratia marcescens LQOB-SE6) em produzir 2,3-butanodiol a partir da fermentação de glicerol e a bactéria que apresentou tal capacidade (S. marcescens LQOB-SE6) foi usada para produzir 2,3-butanodiol também a partir da fermentação de glicose visando o reaproveitamento dos resíduos gerados na produção de biodiesel e de etanol. As melhores condições para o uso do glicerol foram: pH inicial 7, Caldo nutriente 8 g.L-1, concentração inicial de glicerol 50 g.L-1 e tempo de cultivo de 7 dias. Foram obtidos bons rendimento (0,30 g.g-1), produtividade (0,13 g.L-1.h-1) e concentração máxima de 2,3-butanodiol (22,4 g.L-1). As melhores condições para a fermentação da glicose foram: pH inicial 7, Caldo nutriente 8 g.L-1, concentração inicial de glicose 75 g.L-1 e tempo de cultivo de 5 dias. Obteve-se um rendimento de 0,42 g.g-1 em 5 dias de fermentação, produtividade de 0,45 g.L-1.h-1 após 2 dias e concentração máxima de 2,3-butanodiol de 31,2 g.L-1. A produção de 2,3-butanodiol a partir do hidrolisado gerado na hidrólise do bagaço de cana-de-açúcar pelas celulases do fungo de ambiente marinho A. sydowii CBMAI 934 não foi observada devido à baixa concentração de açúcares no hidrolisado. Os resultados obtidos nesta tese mostram o potencial biotecnológico da microbiota fúngica e bacteriana isoladas de diferentes biomas brasileiros. / In Chapter 1 it is reported the cellulase production by 4 marine-derived fungi strains (Aspergillus sydowii CBMAI 934, A. sydowii CBMAI 935, Penicillium citrinum CBMAI 1186 and Mucor racemosus CBMAI 847) and 1 terrestrial fungi strain (Aspergillus sp. CBMAI 1198). They were grown in solid state fermentation using wheat straw as substrate (5 g) and with addition of peptone solution (0,75 g.L-1) enriched with inorganic salts. It was performed the enhancement of the growth conditions by changing the temperature, initial pH and moisture. The optimum temperature for all strains varied between 25-35 °C but A. sydowii CBMAI 935 with 40 °C. The optimum pH was different for each strain, varying from acidic to alkaline conditions. The optimum moisture content also varied accordingly the studied strain. In order enhance the cellulose hydrolysis performed by the produced cellulases, it was varied the pH, temperature and amount of the crude cellulase extract during the filter paper hydrolysis reaction. The obtained optimum values were different among strains and, in some cases, there were two optimum pH and temperature for the hydrolysis of the filter paper. Then, the obtained cellulases, using the best conditions for hydrolysis, were used in the sugarcane bagasse hydrolysis (10 FPU/g of sugarcane bagasse). The cellulases from the strains Aspergillus sp. CBMAI 1198 and A. sydowii CBMAI 934 were capable of degrading 75% and 78% of the sugarcane bagasse, respectively, generating reducing sugars. In Chapter 2, the capability of 6 strains (Bacillus subtilis LQOB-SE1, B. coagulans LQOB-SE2, B. pumillus LQOB-SE3, Brevibacillus brevis LQOB-SE4, Lysinibacillus sp. LQOB-SE5 and Serratia marcescens LQOB-SE6), isolated from peat soil, of producing 2,3-butanediol from glycerol fermentation. The only strain that produced 2,3-butanediol was S. marcescens LQOB-SE6, which was also applied in 2,3-butanediol production from glucose fermentation. Therefore, wastes from biodiesel and bioethanol production can be reused in industrial scale. The best conditions for glycerol fermentation: initial pH 7, Nutrient Broth (8 g.L-1), initial glycerol concentration (50 g.L-1) and fermentation time of 7 days. It were obtained good yield (0.30 g.g-1), productivity (0.13 g.L-1.h-1) and 2,3-butanodiol concentration (22.4 g.L-1). The best conditions for glucose fermentation: initial pH 7, Nutrient Broth (8 g.L-1), initial glucose concentration (75 g.L-1) and fermentation time of 5 days. It were also obtained good yield (0.42 g.g-1) and 2,3-butanodiol concentration (31.2 g.L-1) after 5 days and productivity (0.45 g.L-1.h-1) after 2 days. The 2,3-butanediol production from the hydrolysate of sugarcane bagasse, obtained by using cellulases from A. sydowii CBMAI 934, was not observed due the low sugar concentration in the hydrolysate.
|
133 |
Variedades híbridas de bagaço de cana-de-açúcar: caracterização química e hidrólise enzimática em condições de pré-tratamento difrenciadas / Hybrid sugarcane bagasse varieties: Chemical characterization and enzymatic hydrolysis in different pretreatment conditionsRafael Rodrigues Philippini 30 May 2012 (has links)
O presente trabalho teve como objetivo, a caracterizacao da composicao quimica de diferentes variedades de bagaco de cana-de-acucar (CTC-9; CT99-1906; SP81-3250; RB86-7515 e CT99-1902), e posterior hidrolise enzimatica para averiguacao de acucares redutores e sacarificacao da biomassa. As analises composicionais foram realizadas utilizando biomassa nas condicoes in natura, celulignina e polpa celulosica. As condicoes de pre-tratamento das amostras para hidrolise com acido sulfurico diluido (relacao s/l: 1,5:10; temperatura: 150 °C; concentracao acida: H2SO4 2% m/v; tempo: 30 minutos); e deslignificacao com hidroxido de sodio (1:10 s/l; 100 °C; 1% NaOH; 30 minutos) foram pre-estabelecidas de modo a determinar uma analise comparativa das diferentes variedades de bagaco de cana-de-acucar estudadas. A hidrolise enzimatica das amostras obtidas apos os pre-tratamento foram realizadas em frascos Erlenmeyers de 125 mL, contendo tampao citrato (50 mM; pH 5; 1:20 s/l) e carga enzimatica (Celluclast 1.5 L - 75 FPU/mL e 13,5 UI/mL de ?-glicosidase; e Novozym 188 - 65 UI/mL de ?-glicosidase), e surfactante Tween 20 (0,15 g/g de bagaco). A composicao quimica das variedades de bagaco de cana-de-acucar, acucares redutores e sacarificacao da biomassa foram determinados por metodos cromatograficos, espectrofotometricos e gravimetricos tradicionais. Quanto a analise das variedades de cana tratada, a media dos valores observados: in natura - celulose (40,84%), hemicelulose (24,07%), lignina (33,7%) e cinzas (0,68%); extraido - celulose (38,83%), hemicelulose (27,32%), lignina (25,92), cinzas (0,32%) e extrativos (10,24%); celulignina - celulose (54,17%), hemicelulose (5,3%), lignina (37,28%), cinzas (0,54%) e polpa celulosica - celulose (77,48%), hemicelulose (6,07%), lignina (15,4%) e cinzas (0,32%). Os processos de hidrolise acida e deslignificacao demonstraram remocao eficaz da hemicelulose e da lignina (80% e 58%, respectivamente), e solubilizacao da biomassa (45% e 14%, em media). Os percentuais de sacarificacao da celulose das amostras apos 24 horas de reacao foram de 9,7% para bagaco extraido, 50,4% para celulignina e 72,87% para polpa celulosica. Nao foram observadas variacoes significativas na composicao quimica das cinco amostras estudadas, bem como diferenciacao na sacarificacao das mesmas. Evidenciou-se que emprego de variedades de bagaco de cana-de-acucar distintas utilizando pre-tratamentos em condicoes fixas nao alteram os percentuais quimico-estruturais do vegetal, bem como a recuperacao da glicose e dos acucares redutores presente na celulose. / The present work had as objective the chemical characterization of different varieties of sugarcane bagasse (CTC-9; CT99-1906; SP81-3250; RB86-7515 e CT99-1902) in different pretreatment conditions and the influence of pretreatments concerning varieties, reducing sugars recovery and biomass saccharification. Different pretreated biomass were obtained from in natura bagasse as it follows: extracted bagasse (24 hours/24 hours water/ethanol extraction in Sohxlet equipment), cellulignin (solid/liquid ratio: 1.5/10; temperature: 150 °C; acid concentration: H2SO4 2% w/v; residence time: 30 minutes); and cellulose pulp (1:10 solid/liquid ratio; 1% NaOH w/v; 100°C; 30 minutes). Enzymatic hydrolysis experiments were performed in 125 mL Erlenmeyers containing citrate buffer (50 mM; pH 5; 1:20 solid/liquid ratio), Tween 20 surfactant (0.15 g/g of bagasse) and commercial enzymatic loads of Celluclast 1.5 L (75 FPU/mL and 13,5 IU/mL of ?- glicosidase) and Novozym 188 (65 IU/mL of ?-glucosidase). Chemical composition of varieties, reducing sugars and biomass saccharification were determined by chromatographic, spectrometric and gravimetric traditional methods. Biomass presented an average composition in each condition as it follows: In natura - cellulose (40.84%), hemicellulose (24.07%), lignin (33.7%) and ashes (0.68%); Extracted - cellulose (38.83%), hemicellulose (27.32%), lignin (25.92), ashes (0.32%) and extractives (10.24%); Cellulignin - cellulose (54.17%), hemicellulose (5.3%), lignin (37.28%) and ashes (0.54%). Cellulose pulp - cellulose (77.48%), hemicellulose (6.07%), lignin (15.4%) and ashes (0.32%). Acid and alkaline hydrolysis presented effective removal of hemicellulose and lignin (80% and 58% respectively), showing as average biomass solubilization 45% and 14%. Saccharification after 24 hours of reaction presented 9,7% for extracted bagasse, 50.4% for cellulignin and 72.87% for cellulose pulp. There were no significant observations in chemical-structural composition and at cellulose saccharification of the five studied samples, showing that the variety did not present any relevant influence on pretreated sugarcane bagasse.
|
134 |
Ação das enzimas ligninolíticas produzidas por Aspergillus niger e Penicillium sp. em bagaço de cana-de-açúcar tratado quimicamente / The action of lignolytic enzymes produced by Aspergillus niger and Penicillium sp in chemically treated sugarcane bagasseFasanella, Cristiane Cipola 22 January 2009 (has links)
A cana-de-açúcar é uma das matérias primas para a produção de açúcar e álcool. Durante o processo de produção, é gerado como subproduto (ou resíduo) o bagaço, que possui várias aplicações, entre elas a geração de energia, fertilizantes, produção de combustíveis e ração animal. O bagaço da cana-de-açúcar é composto principalmente por materiais lignocelulósicos, possuindo como constituintes principais a celulose, a hemicelulose e a lignina. A lignina é um dos materiais mais recalcitrantes na natureza e, conseqüentemente, dificulta o acesso de enzimas aos carboidratos fermentáveis, reduzindo a eficiência da degradação da celulose e da fermentação. Uma das vias de degradação da lignina ocorre através da ação de enzimas produzidas por fungos de degradação branca, marrom e macia. Essas enzimas são capazes de degradar e expor a celulose e a hemicelulose, que, por sua vez são prontamente utilizadas por outros microrganismos. Para que isso ocorra, esses fungos promovem um processo de oxidação de compostos fenólicos e não fenólicos da molécula de lignina por meio de enzimas ligninolíticas extracelulares entre elas a lacase e a manganês peroxidase (MnP), em baixa velocidade, porém com grande eficiência. O presente trabalho tem como objetivo avaliar diferentes tratamentos químicos alcalinos (NaOH e Ca(OH)2) e biológicos (Penicillium sp. e Aspergillus niger) por microscopia óptica, eletrônica de transmissão e de varredura com o intuito de promover uma alteração física na estrutura da fibra do bagaço de cana-de-açúcar. Os resultados foram avaliados pelas técnicas de microscopia demonstrando que a ação dos tratamentos químicos, principalmente do NaOH + Ca(OH)2, provocou uma eficiente desestruturação das fibras em comparação aos outros tratamentos. Em relação às atividades enzimáticas, o pré-tratamento do bagaço com NaOH +. Ca(OH)2 associado ao A. niger mostrou ser mais eficiente para a produção de lacase. Já para a atividade enzimática de MnP, o tratamento controle (bagaço autoclavado) foi o que apresentou maior eficiência. Para Penicillim sp., a atividade enzimática da lacase não aprsesentou diferença significativa entre os pré-tratamentos bagaço autoclavado e NaOH + Ca(OH)2, no entanto, quando comparados aos pré-tratamentos com NaOH e Ca(OH)2 foram os mais eficientes para a produção dessa enzima. Para a enzima MnP, o pré-tratamento associado às duas bases foi mais eficiente. / Sugarcane is one of the raw materials used for sugar and alcohol production. During the production process, bagasse is generated as a subproduct (or residue), which has a large range of application, as electric power generation, fertilizers, combustible production and animal feeding. Sugarcane bagasse is mainly composed by lignocellulosic material, containing as main component cellulose, hemicelluloses and lignin. Lignin is one of the most recalcitrant naturally found molecules, and, consequently, hardens the access of enzymes to fermentable carbohydrates, decreasing the efficiency of cellulose degradation and fermentation. One of the lignin degradation pathways occurs throughout the action of enzymes produced by white-rot, brown and soft-rot fungi. These enzymes are able to degrade lignin, exposing cellulose and hemicelluloses, which get available for other microorganisms. In order to perform this process, these fungi promote an oxidation process of phenolic and non-phenolic compounds of the lignin molecule, by the lignolytic extracellular enzymes. Among them are the enzymes laccase and manganese peroxidase (MnP), which have a slow rate activity, however of high efficiency. The present work has as objective to evaluate different alkaline chemical (NaOH and Ca(OH)2) and biological (Penicillium sp. and Aspergillus niger) treatments by optic microscopy, scanning electron microscopy and transmission electronic microscopy to promote alteration on the physical structure of the sugarcane bagasse fiber. The results were evaluated by the microscopy technique, showing that the activity of the chemical treatments, in special of NaOH + Ca(OH)2 promoted an efficient loss of structure of fibers in comparison to the other treatments. In respect to the enzymatic activity, the bagasse pre-treated with NaOH + Ca(OH)2, in association with A. Niger showed to be more efficient for laccase production. Meanwhile, for the MnP enzymatic activity, the control treatment (only autoclaved bagasse) was that presented the highest efficiency. For Penicillium sp., the laccase enzymatic activity did not present any significant difference among the pre-treatments autoclaved bagasse (control) and NaOH + Ca(OH)2. However, when compared to the pretreatments with NaOH and Ca(OH)2, they were more efficient for the production of the referred enzyme. For MnP, the pre-treatments associated to both alkalis had an increased efficiency.
|
135 |
Análise enzimática de fungos lignocelulolíticos cultivados em vinhaça e bagaço de cana-de-açúcar / Enzymatic analysis of lignocellulolytic fungi cultivated in vinasse and sugarcane bagasseAguiar Filho, José Mário Mamede 11 February 2009 (has links)
O setor sucroalcooleiro é uma importante representação do potencial bioenergético do Brasil. A estimativa da produção de cana-de-açúcar para a safra de 2007/2008, segundo a Companhia Nacional de Abastecimento (Conab), será de mais de 11% que na safra passada. A cana-de-açúcar constitui uma fonte de energia abundante e renovável. Além do aproveitamento de seu caldo para a produção de etanol e do emprego do bagaço para fins energéticos em processos de combustão e gaseificação, seus polissacarídeos constituintes (celulose e polioses) podem ser liberados por hidrólises enzimáticas para serem fermentados a etanol e outros produtos químicos de maior valor agregado. Porém os resíduos gerados a partir desse processamento, como o bagaço e a vinhaça, podem ser reaproveitados para outros fins. A ecologia da degradação da celulose e lignina é lenta e muito complexa, envolvendo inúmeras e variadas interações metabólicas entre diferentes microrganismos que também são afetados por vários fatores ambientais. Partindo de nove linhagens de fungos, foram selecionados quatro quanto à produção de biomassa e produção de celulases e ligninases em meios específicos. Estas linhagens, três espécies e Pleurotus: P. sajor-caju, P. ostreatoroseus e P. ostreatus, e Trichoderma reesei foram cultivadas em bagaço pré-tratado com 2% H2SO4, 1,5% NaOH, 2% H2O2 e combinação 2% H2O2 + 1,5% NaOH. Foram determinados o teor de celulose, lignina e hemicelulose resultante de cada tratamento e a atividade lignolíticas: lacase, peroxidase e manganês peroxidase e a atividade das enzimas celulolíticas: exoglicanase e endoglicanase, comparando com um controle sem tratamento químico. A atividade celulolítica foi avaliada com os quatro fungos cultivados em meio bagaço-moído umedecido com vinhaça e bagaço-moído umedecido com meio mineral. Em relação ao controle foi observado que o pré-tratamento conjunto 2% H2O2 + 1,5% NaOH + autoclave proporcionou maior quebra nas fibras aumentando 1,4 vezes o teor de celulose e diminuindo em 8,5 vezes o da hemicelulose. Esse mesmo tratamento também proporcionou uma maior atividade lignolítica para as quatro linhagens. O ascomiceto T. reesei produziu lacase, peroxidase e manganês peroxidase em todos os tratamentos inclusive no controle, sendo a atividade de manganês peroxidase de 1,9 a 4,8 vezes maior que os basidiomicetos. / The sugar-alcohol industry is an important representation of the bioenergy potential of Brazil. The estimative for the 2007/2008 sugarcane production, according to the National Supply Company (Conab), will be of about 11% more than the last season. Sugarcane constitutes a large and renewable energy source. Besides the exploitation of its juice for ethanol production and the use of bagasse for energetic means in processes of combustion and gasification, its polysaccharides constituents (cellulose and cellobiose) can be released by enzymatic hydrolyses for alcohol fermentation and other chemical of higher aggregate value. However the residues generated from this process, like bagasse and vinasse, which can be reutilized for other means. To obtain an effective conversion of these residues, chemical and biological pre-treatments are necessary for an improved hydrolysis. The ecology of the cellulose and lignin degradation is slow and very complex, involving innumerous and different metabolic interactions among microorganism that are also affected by many environmental factors. From nine lineages of fungi, were selected four relating to the production of biomass and cellulases and ligninases in specific media. These lineages, three species of Pleurotus: P. sajor-caju, P. ostreatoroseus and P. ostreatus, and the ascomycete Trichoderma reesei were cultivated in pre-treated bagasse with 2% H2SO4, 1,5% NaOH, 2% H2O2 and a combination of 2% H2O2 + 1,5% NaOH. It was determined the levels of cellulose, lignin and hemicellulose from each treatment and the lignolytic activity: laccase, peroxidase and manganese peroxidase and the activity of the cellulolitic enzymes: exogluconase and endogluconase, comparing to a control without chemical treatment. The cellulolitic activity was evaluated with the four cultivated fungi in two media: a grounded bagasse + vinasse and grounded bagasse + mineral media. Relating to the control was observed that the pre-treatment in conjunction with 2% H2O2 + 1,5% NaOH + autoclave promoted more breakage in the fiber increasing to 1,4 times the level of cellulose and decreasing the levels of hemicellulose to 8,5 times. This same treatment promoted a higher lignolytic activity for the four lineages. The ascomycete T. reesei produced laccase, peroxidase and manganese peroxidase in all treatments including the control, having the manganese peroxidase activity ranging from 1,9 to 4,8 times higher than the basidiomycetes.
|
136 |
Produção e uso de enzimas derivadas do fungo Pleurotus ostreatus na hidrólise de bagaço de cana pré-tratado por processo quimiotermomecânico / Production and use of enzymes derived from the fungus Pleurotus ostreatus in the hydrolysis of sugarcane bagasse pretreated by chemithermomechanical processValadares, Fernanda de Lima 23 August 2013 (has links)
Fungos de decomposição branca atuam eficientemente na biodegradação de substratos altamente lignificados, como a madeira. Tal característica permite supor que esses organismos apresentem um sistema celulolítico com atividade diferenciada em substratos ricos em lignina. O presente trabalho avaliou o efeito da adição de enzimas derivadas do fungo de decomposição branca Pleurotus ostreatus em preparações de celulases comerciais durante a hidrólise enzimática do bagaço de cana previamente submetido a tratamento quimiotermomecânico com sulfito alcalino. Duas cargas de sulfito alcalino foram empregadas nos pré-tratamentos: uma mais elevada de 10 g de Na2SO3 e 5 g de NaOH para cada 100g de bagaço, que gerou um substrato de baixa recalcitrância; e uma carga diminuída à metade da anterior, que originou um substrato de elevada recalcitrância. Primeiramente, a produção de endoglucanases (EG) em cultivos submersos de P.ostreatus foi avaliada em diferentes fontes de carbono, sendo a maior produção de EG (342 UI L-1) verificada após 20 dias de cultivo em meio contendo bagaço de cana moído e carboximetilcelulose (CMC). Contudo, devido a CMC ser considerada um interferente nos ensaios de hidrólise do bagaço, optou-se por utilizar enzimas derivadas dos cultivos que empregaram somente bagaço de cana como fonte de carbono. Os experimentos de hidrólise empregaram cargas de enzimas correspondentes a 10FPU (carga alta) e 5FPU (carga média) de celulases derivadas de Trichoderma reesei ATCC 26921, misturadas com uma carga de 15 UI.g-1 de ?-glicosidase (BGL) derivadas de Aspergillus niger, para cada grama de bagaço. Para os experimentos de hidrólise que empregaram enzimas derivadas de P. ostreatus ajustou-se a carga de endoglucanase para que 50% da atividade fosse derivada de T. reesei, e 50% proveniente de P. ostreatus. A suplementação com enzimas de P. ostreatus causou uma alteração no teor das demais enzimas hidrolíticas, verificando-se valores de atividades de xilanases e celulases, com exceção das celobiohidrolases, superiores aos observados com o emprego da carga alta de enzimas comerciais. A conversão da celulose obtida durante a hidrólise dos bagaços pré-tratados mostraram que as enzimas de P. ostreatus proporcionaram valores de velocidade inicial de hidrólise equivalentes aos obtidos nos ensaios com carga alta de enzimas comerciais. Esse resultado foi atingido mesmo com uma carga de celobiohidrolases duas vezes inferior a existente nos ensaios com alta carga de enzimas comerciais, o que levou a considerar que as enzimas derivadas de P. ostreatus possam apresentar atividade celulolítica diferenciada. Além disso, o maior teor de enzimas xilanolíticas nos extratos de P. ostreatus resultou em maiores valores de conversão da xilana. A maior remoção de xilana também pode ter favorecido a maior conversão de celulose obtida mesmo com baixa carga de celobiohidrolases nas misturas reacionais, visto que a remoção da xilana associada à celulose aumentaria a disponibilidade do substrato às celulases. Contudo, a conversão de celulose a partir de 8-24h de hidrólise suplementada com enzimas de P. ostreatus foi ligeiramente inferior ao obtido na hidrólise com carga alta de celulases de T. reesei. / White-rot fungi are able to degrade highly lignified substrates, such as wood. This characteristic allows us to assume that these organisms possess a cellulolytic system with differentiated activity on lignin-rich substrates. This study evaluates how cellulolytic enzymes produced by the white-rot fungus Pleurotus ostreatus perform in the hydrolysis of pretreated sugarcane bagasse. The sugar cane bagasse was initially pretreated with two chemical loadings of alkaline sulphite: 10 g of Na2SO3 and 5 g of NaOH per 100g of pulp (high chemical load), generating a substrate with low recalcitrance; and a load decreased to half of the previous one, which gave a more recalcitrant substrate. The production of endoglucanases (EG) in submerged cultures of P.ostreatus was evaluated using different carbon sources in the culture media. The highest EG production (342 IU L-1) was observed after fungal growth for 20 days in the culture medium that contained sugarcane bagasse and carboxymethylcellulose (CMC) as carbon sources. However, residual CMC present in the culture extracts was considered to interfere in subsequent hydrolysis assays and we decided to use enzymes derived from the cultures that used only sugarcane bagasse as carbon source. The reference hydrolysis experiments were performed with enzyme loadings of 10 FPU (high loading) and 5 FPU (medium loading) from cellulases derived from Trichoderma reesei ATCC 26921 mixed with 15 UI of ?-glucosidase (BGL) from Aspergillus niger (enzyme loadings expressed in units per gram of pretreated bagasse). For the hydrolysis experiments that used enzymes from P. ostreatus, the enzyme loading was adjusted in order to have 50% of original endoglucanase activity from T. reesei enzymes replaced by enzymes from P. ostreatus enzymes. The addition of P. ostreatus enzymes caused a change in the overall levels of hydrolytic enzymes present in the reaction medium. Xylanase and beta-glucosidase activities were higher than those observed in the commercial enzymes mixture. However, the cellobiohydrolase levels were the half of the original values from the commercial enzymes. The cellulose conversion during the hydrolysis of pretreated bagasses showed that the enzymes from P. ostreatus provided initial hydrolysis rate values similar to those obtained in tests with the high loading of commercial enzymes. This result was achieved even with a cellobiohydrolase loading twice lower than in the assays with high loading of commercial enzymes, which led to the conclusion that the enzymes derived from P. ostreatus can show differentiated cellulolytic activity. In addition, the higher content of xylanolytic enzymes in P. ostreatus extracts resulted in higher xylan conversion. The higher removal of xylan may have also resulted in the higher conversion of cellulose, even with low cellobiohydrolases in the reaction mixtures, since removal of xylan increases the accessibility of the cellulases to the substrate. However, the cellulose conversion after 8-24h hydrolysis supplemented with enzymes from P. ostreatus was slightly lower than that obtained in the hydrolysis with high loading of cellulases from T. reesei.
|
137 |
Hydrodynamic cavitation as a new approach for sugarcane bagasse pretreatment aiming to second generation ethanol production / Cavitação hidrodinâmica como uma nova abordagem para o prétratamento do bagaço de cana-de-açúcar visando à produção de etanol de segunda geraçãoHilares, Ruly Terán 26 October 2017 (has links)
Renewable energy sources have been proposed as a viable option to mitigate the consumption and the dependence of fossil fuels. Among the available alternatives, lignocellulosic biomass has shown great potential for bioenergy generation, and biofuels as ethanol can be obtained by fermentation from sugars present in cellulosic and hemicellulosic fractions of biomass. However, for the efficient release of fermentable sugars during the enzymatic hydrolysis step, a pretreatment process is required to modify the material in its structure and composition. In this context, hydrodynamic cavitation (HC) was proposed in this work as a new and promising alternative for pretreatment of sugarcane bagasse. Firstly, the variables NaOH concentration, solid/liquid (S/L) ratio and HC process time were optimized in HC assisted pretreatment. In optimized conditions (0.48 mol/L of NaOH, 4.27% of S/L ratio and 44.48 min), high lignin removal (60.4%) and enzymatic digestibility of cellulose fraction (97.2%) were obtained. Based in those results, new variables (inlet pressure, temperature, alkali concentration) were included for evaluation in a second stage of the study aiming to reduce the HC pretreatment time. In this case, temperature and álcali concentration showed more significance on lignin removal and hydrolysis yield of carbohydrate fraction in pretreated biomass. No significant difference in pretreatment efficiency was observed in 20 and 30 min of process time in the best conditions (70 °C, 3 bar of inlet pressure and 0.3 mol/L of NaOH). The dimensionless cavitation number influence also was evaluated in two levels (0.017 and 0.048), resulting higher efficiency using low cavitation number which was obtained using orifice plate with 16 holes (1 mm of diameter). Using the last optimized conditions and lower temperature (60 °C instead 70 °C) in order to avoid the foam formation when black liquor is reused, other alkalis (Ca(OH)2, Na2CO3, KOH) were evaluated in combination with HC and compared to the use of NaOH. High enzymatic conversions of carbohydrate fraction were observed in biomass pretreated using KOH-HC and NaOH-HC; additionally, NaOH black liquor was reused in 10 sequential batches. The pretreated biomass using fresh and reused black liquor were mixed and used for simultaneous saccharification and fermentation process (SSF) in interconnected column reactors, resulting in 62.33% of hydrolysis of total carbohydrate fractions and 17.26 g/L of ethanol production (0.48 g of ethanol/g of glucose and xylose consumed). Finally, the addition of oxidant agent (H2O2) in the alkali HC-process was optimized. In selected conditions (0.29 mol/L of NaOH, 0.78 % v/v of H2O2 and 9.8 min), 95,43% and 81.34% of enzymatic hydrolysis yield of cellulose and hemicellulose fraction were achieved respectively, using 5% of solid loading (S/L) in the hydrolysis process. When packed bed flow-through column reactor using 20% of S/L was used, 74.7% cellulose hydrolysis yield was reached. Sugars present in hydrolysate were also fermented into ethanol in bubble column reactor resulting in a yield value of 0.49 g/g and 0.68 g/L.h of productivity. By analyzing the results as a whole, HC was shown as a promising technology to accelerate the pretreatment time under mild conditions, showing advantages as simplicity of system and possibility to application in industrial scale. / O uso de fontes de energia renováveis tem sido proposto como uma alternativa viável para reduzir o consumo e a dependência de combustíveis fósseis. Entre as alternativas disponíveis, a biomassa lignocelulósica apresenta grande potencial para geração de bioenergia, sendo que biocombustíveis como o etanol podem ser obtidos por fermentação a partir de açúcares presentes em suas frações celulósicas e hemicelulósicas. No entanto, para a liberação eficiente de açúcares fermentáveis na etapa de hidrólise enzimática, é necessário um processo prévio de pré-tratamento para modificar a estrutura e composição do material. Neste contexto, no presente trabalho a cavitação hidrodinâmica (CH) foi proposta como uma nova e promissora alternativa para o pré-tratamento do bagaço de cana-de-açúcar. Em uma primeira etapa, as variáveis concentração de NaOH, relação sólido/líquido (S/L) e tempo de processo foram otimizadas no pré-tratamento assistido por CH. Em condições otimizadas (0,48 mol/L de NaOH, 4,27% de relação S/L e 44,48 min), elevados valores de remoção de lignina (60,4%) e digestibilidade enzimática da fração de celulose (97,2%) foram obtidos. Com base nesses resultados, novas variáveis (pressão à montante, temperatura e concentração de álcali) foram incluídas para avaliação em uma segunda etapa do estudo com o objetivo de reduzir o tempo de pré-tratamento com CH. Neste caso, a temperatura e a concentração de álcalis foram as mais importantes na remoção de lignina e influenciaram na hidrólise das frações carboidrato da biomassa pré-tratada. Não houve diferença significativa na eficiência do pré-tratamento em 20 e 30 minutos de tempo de processo nas melhores condições (70 ° C, 3 bar de pressão a montante e 0,3 mol/L de NaOH). A influência do adimensional -número de cavitação? também foi avaliada em dois níveis (0,017 e 0,048), resultando em maior eficiência usando o número de cavitação mais baixo, que foi obtido usando placa de orifício com 16 furos (1 mm de diâmetro). Usando estas condições otimizadas e menor temperatura (60 ° C ao invés de 70 ° C) para evitar a formação de espuma quando o licor negro é reutilizado, outros álcalis (Ca (OH)2, Na2CO3, KOH) foram avaliados em combinação com CH e comparados com o uso de NaOH. Conversões enzimáticas elevadas das frações carboidrato foram observadas em material pré-tratado utilizando KOH-CH e NaOH-CH; além disso, o licor negro de NaOH foi reutilizado em 10 bateladas sequenciais. As biomassas pré-tratadas com licor negro reutilizado e fresco foram misturadas e utilizadas em processo de sacarificação e fermentação simultâneas (SSF) em reatores de coluna interligados, resultando em 62,33% de hidrólise das frações carboidrato e 17,26 g/L de produção de etanol (0,48 g de etanol/g de glicose e xilose consumidos). Finalmente, a adição de agente oxidante (H2O2) no processo alcalino-CH foi otimizado. Nas condições selecionadas (0,29 mol/L de NaOH, 0,78% v/v de H2O2 e 9,8 min), 95,43% e 81,34% de rendimento de hidrólise enzimática das frações de celulose e hemicelulose, respectivamente, foram obtidos utilizando 5% de carregamento de sólidos (S/L) no processo de hidrólise. Quando foi utilizado reator de coluna de leito fixo com 20% de S/L, atingiu-se 74,7% de rendimento de hidrólise de celulose. Os açúcares presentes no hidrolisado também foram fermentados em etanol em um reator de coluna de bolhas, resultando em um valor de rendimento de 0,49 g/g e 0,68 g/L.h de produtividade. Analisando-se os resultados de uma forma global, demonstrou-se que a CH é uma tecnologia promissora para acelerar o tempo de pré-tratamento em condições amenas, mostrando vantagens como simplicidade do sistema e possibilidade de aplicação em escala industrial.
|
138 |
Estudo do uso de ligninas como agente compatibilizante em compósitos de polipropileno reforçados com celulose de bagaço e palha de cana-de-açúcar / Study of the use of lignins as coupling agent in composites reinforced with celulose from sugarcane bagasse and strawMileo, Patrícia Câmara 28 April 2015 (has links)
A necessidade de desenvolver novos materiais que atendam aos aspectos econômicos e ambientais leva à busca de se fazer uso dos recursos naturais para várias aplicações tecnológicas. Assim, o desenvolvimento de materiais compósitos poliméricos utilizando fibras naturais como reforço é crescente, e vem ocupando novos segmentos de mercado, devido ao baixo custo das fibras, biodegradabilidade, menor densidade e boas propriedades mecânicas. Este trabalho teve como objetivo a separação dos principais componentes da palha e do bagaço de cana-de-açúcar para a obtenção de insumos químicos com maior valor econômico, sendo proposta a obtenção e caracterização da celulose, que será utilizada como reforço, e da lignina que atuará como agente compatibilizante em compósitos poliméricos. Para alcançar os objetivos propostos no projeto, foi realizado o pré-tratamento por ácido diluído da palha e do bagaço de cana-deaçúcar, seguido de uma etapa de deslignificação com NaOH. As polpas de bagaço e de palha foram submetidas a um pré-branqueamento com xilanase e a um branqueamento composto de extração alcalina, quelação com EDTA e tratamento com peróxido de hidrogênio. O licor negro foi acidificado para que as ligninas precipitassem. Após lavagem, secagem e maceração, as ligninas obtidas foram submetidas ou não à oxidação química em meio ácido com peróxido de hidrogênio. Além da caracterização química das frações a cada etapa do processamento, foram determinados o número Kappa, viscosidade, e também foram feitas medidas de DRX e MEV. A confirmação e extensão da reação de oxidação das ligninas foi avaliada por RMN, FTIR, MEV e TGA/DSC. Os compósitos foram obtidos por mistura em homogeneizador termocinético de alta intensidade e, depois de injetados, caracterizados por ensaios mecânicos, análises térmicas, microscopia, FTIR, medidas de ângulo de contato e energias de superfície, absorção de água e sorção dinâmica de vapor. Os resultados obtidos por meio da caracterização química, número Kappa e viscosidade indicaram expressiva remoção de hemiceluloses e de lignina durante todas as etapas de obtenção da celulose branqueada, tanto de bagaço quanto de palha, mas também houve significativa perda de celulose. Os resultados de DRX mostraram significativa diminuição da cristalinidade da celulose, para as duas biomassas estudadas. Os resultados de FTIR e RMN confirmaram a mudança na estrutura das ligninas após a oxidação. O tempo de mistura dos compósitos variou com a composição e/ou presença ou não de lignina/lignina oxidada. Nas análises de TGA observou-se que os compósitos PP/celulose sem a adição de lignina/lignina oxidada apresentaram temperatura inicial de decomposição menor do que os compósitos nos quais utilizou-se a lignina como aditivo. As curvas de DSC dos compósitos apresenta perfil e picos de temperatura e entalpias de fusão semelhantes ao PP puro. A lignina não tem notável efeito sobre as propriedades mecânicas dos compósitos, sendo que a melhora nestas propriedades é principalmente devido à incorporação das fibras de celulose. As imagens de MEV para as ligninas mostraram o grande efeito da oxidação sobre a superfície deste material. A análise do ângulo de contato estático para ligninas mostrou que a oxidação produziu um material mais hidrofóbico. As energias de superfície mostraram que os compósitos têm uma superfície mais hidrofóbica do que o PP puro. As curvas de FTIR dos materiais mostraram-se bastante similares, porém as maiores diferenças foram na intensidade das bandas correspondentes aos grupos hidroxila presentes nas fibras e, aos anéis aromáticos da estrutura da lignina. Os resultados DVS mostraram que a absorção de umidade dos compósitos é muito baixa, e corrobora os resultados de absorção de água. / The need of developing new materials that attend economic and environmental aspects leads to the search of using natural resources for various technological applications. Thus, the development of polymeric composite materials using natural fibers as reinforcement is growing, and occupying new market segments, due to the low cost of fibers, biodegradability, low density and good mechanical properties. This work aimed to separate the main components of sugarcane straw and bagasse for obtaining chemical products with higher economic value, it proposes the obtaining and characterization of cellulose, which will be used as a reinforcement, and of the lignin that will act as coupling agent in polymeric composites. To achieve these objectives, it was carried out a dilute acid pretreatment of straw and bagasse of sugar cane, followed by a step of delignification with NaOH. The pulps of bagasse and straw were submitted to a pre-bleaching with xylanase and a bleaching step, composed by an alkaline extraction, EDTA chelation and a treatment with hydrogen peroxide. The black liquor was acidified for the precipitation of the lignins. After washing, drying and milling, the lignins obtained were subjected or not to an oxidation reaction in acid medium with hydrogen peroxide. In addition to the chemical characterization of the fractions at each stage of processing, the Kappa number and viscosity were determined, and it was also made measures of DRX and MEV for bagasse and straw. The confirmation of the oxidation reaction of the lignins was analysed by NMR, FTIR, MEV and TGA/DSC. The composites were obtained by mixing in thermokinetic mixer and once injected, they were characterized by mechanical tests, thermal analysis, microscopy, FTIR, contact angle and surface energies, water absorption and dynamic vapor sorption. The results obtained by the chemical characterization, Kappa number and viscosity indicated a great solubilization of hemicelluloses and lignin during all stages of production of bleached cellulose, both from bagasse and straw, but it was also observed an expressive cellulose loss. The results of DRX showed a great decrease of cellulose crystallinity, for both biomasses, demonstrating that the removal of hemicellulose and lignin affected the structure of cellulose. The FTIR and NMR results confirmed the change in structure of the lignins after oxidation. The mixing time of composites varied with the composition and the presence or absence of lignin/oxidized lignin. From TGA analyses it was observed that the composites PP/cellulose without the addition of oxidized lignin/lignin showed an initial degradation temperature lower than the composites in which lignin was used as an additive. The DSC curves of composites presents profile and temperature peaks and enthalpies of fusion similar to pure PP. Lignin has no remarkable effect on the mechanical properties of the composites, and the improvement in these properties is mainly due to the incorporation of the cellulosic fibers. MEV pictures of lignins showed that the oxidation had a great effect on the surface of this material. From the analysis of the static contact angle for lignins, it was observed that the oxidation produced a more hydrophobic material. The energies of surface showed that the composites have a more hydrophobic surface than the pure PP. FTIR curves of materials were quite similar, however the greatest differences were in the intensity of the bands corresponding to the hydroxyl groups present in the fibers and the aromatic rings of lignin structure. DVS results showed that the moisture absorption of composites is very low, and corroborates the results of water absorption.
|
139 |
Efeito da lignina de bagaços de cana-de-açúcar pré-tratados na hidrólise enzimática da celulose / Effect of the lignin from pretreated sugarcane bagasses in the enzymatic hydrolysis of the celluloseSiqueira, Germano Andrade 10 April 2015 (has links)
No presente trabalho, avaliou-se o efeito limitante da lignina residual de bagaço de cana submetido a diferentes pré-tratamentos na hidrólise da celulose. O bagaço foi submetido a cinco pré-tratamentos: NaOH (5%), Na2SO3/NaOH (10%/5%), H2SO4 (0,75%), NaHSO3/H2SO4 (5%/0,75%) e explosão a vapor catalisada por SO2 (3%). Os pré-tratamentos resultaram em bagaços com diferentes composições químicas, sendo que os tratamentos alcalinos favoreceram a solubilização de lignina e os tratamentos ácidos favoreceram a solubilização de hemicelulose. Os bagaços tratados com Na2SO3/NaOH e por explosão a vapor resultaram em rendimentos de hidrólise de celulose superiores a 80% ao utilizar altas cargas de enzima (Celluclast), indicando a maior acessibilidade da celulose desses materiais. Isso foi confirmado pela técnica de coloração de Simons, que mostrou que a área superficial acessível da celulose desses dois bagaços foi maior que a dos demais. Boas correlações (R2>0,8) entre o rendimento de hidrólise da celulose em 72 h e a celulose superficial acessível só foram obtidos com altas cargas de enzima, evidenciando que fatores além da acessibilidade limitaram a hidrólise da celulose com quantidade menor de enzimas. As ligninas dos bagaços pré-tratados foram isoladas e a capacidade adsortiva de proteínas foi determinada. A lignina de bagaço tratado por explosão a vapor apresentou maior capacidade adsortiva, seguida da lignina de bagaço tratado com NaOH. Os pré-tratamentos com íons sulfito (Na2SO3/NaOH e NaHSO3/H2SO4) resultaram em ligninas com capacidades adsortivas inferiores quando comparado aos seus análogos sem sulfito (NaOH e H2SO4), possivelmente pela sulfonação da lignina residual, confirmada pela presença de grupos ácidos fortes nesses bagaços. A adição de BSA prévia à adição de celulases confirmou o forte efeito da adsorção improdutiva causada pela lignina nos bagaços tratados com NaOH e por explosão a vapor, materiais cujas ligninas apresentaram maiores capacidades adsortivas. A adsorção improdutiva foi menor ao utilizar o extrato enzimático Cellic CTec3, evidenciando que as enzimas desse coquetel são menos sensíveis à presença da lignina. Do extrato Celluclast, a enzima que mais adsorveu nas ligninas de bagaço tratado com NaOH e por explosão a vapor foi a ?-glicosidase, seguida da endoglucanase. As enzimas purificadas CBHI e EGII de T. longibrachiatum adsorveram menos à lignina de bagaço tratado por explosão a vapor que as mesmas enzimas de T. reesei. A ?-glicosidade de A. niger não adsorveu a essa lignina. Independentemente do pré-tratamento, a presença de fenóis solubilizados a partir da lignina, em baixas concentrações, resultou em aumento no rendimento de conversão de celulose ao utilizar baixas cargas de enzima, possivelmente pelo efeito positivo causado por esses na atividade de enzimas oxidativas, ou pela presença de lignossulfonatos. Em concentrações mais elevadas, independente da carga enzimática, os fenóis liberados foram inibitórios em todos os pré-tratamentos. A atividade de CBHI foi mais sensível à presença dos compostos fenólicos que a atividade de ?-glicosidase. A partir dos resultados, conclui-se o aumento da acessibilidade, seja pela remoção ou pela relocalização da lignina, é o fator que mais influencia a hidrólise eficiente da celulose do bagaço. A adsorção improdutiva foi dependente do pré-tratamento, e resultou em diminuição significativa dos rendimentos de hidrólise da celulose com baixas cargas de enzima. / The present work evaluated the limiting effect of the residual lignin of sugarcane bagasse submitted to different pretreatments: NaOH (5%), Na2SO3/NaOH (10%/5%), H2SO4 (0.75%), NaHSO3/H2SO4 (5%/0.75%) and SO2-catalyzed steam explosion (3%). The pretreatment resulted in bagasses with different chemical compositions, wherein the alkaline treatments resulted in a more efficient solubilization of lignin, and the acidic treatments solubilized the hemicellulose. The bagasses treated with Na2SO3/NaOH and by steam explosion resulted in cellulose hydrolysis yields above 80% using higher enzyme loadings (Celluclast), indicating the increased accessibility of the cellulose in these materials. This was confirmed by Simons\' Stain, which showed that the accessible surface area of the cellulose in these bagasses was higher than in the others. Good correlations (R2>0.80) between the 72 h hydrolysis yields and the accessible surface area of cellulose were only observed at higher enzyme loadings, indicating that other factors than accessibility, limit the hydrolysis at lower enzyme loadings. The lignins were isolated from the pretreated bagasses and the protein binding capacity was determined. The lignin from steam exploded bagasse showed the highest binding capacity, followed by the lignin extracted from NaOH-treated bagasse. The sulfite pretreatments (Na2SO3/NaOH e NaHSO3/H2SO4) resulted in lignins with lower binding capacities, when compared to their analogues without sulfite (NaOH e H2SO4), possibly because of the sulfonation of the residual lignin, confirmed by the presence of strong acid groups in these bagasses. BSA addition prior to the cellulases confirmed the strong effect of unproductive binding caused by the lignin in the NaOH-treated and steam exploded bagasses, materials with the highest binding capacity lignins. Less unproductive binding was observed using the enzyme extract Cellic CTec3, showing that the enzymes in this cocktail are less sensitive to the presence of lignin. From the extract Celluclast, the enzyme that most adsorbed to the lignins isolated from NaOH-treated and steam exploded bagasses was ?-glucosidase, followed by the endoglucases. The purified CBHI and EGII from T. longibrachiatum were less adsorbed to steam exploded bagasse lignin that the same enzymes from T. reesei. ?-glucosidase from A. niger did not bind to this lignin. Despite of the pretreatment, the presence of phenols solubilized from lignin, at lower concentrations, increased the cellulose hydrolysis yields with lower enzyme loading, possibly because of the positive effect of these compounds in the activity of oxidative enzymes, or because of the presence of lignosulfonates. At higher concentrations, despite of the enzyme loading, the phenols were inhibitory in all the pretreatments. The CBHI activity was more sensitive to the presence of phenolic compounds than the ?-glucosidase activity. From these results, it is possible to conclude that the increase in the accessibility, due to the lignin removal or relocation, influences the most the efficient hydrolysis of bagasse cellulose. The unproductive binding was pretreatment dependent and resulted in a significant decrease in the hydrolysis yields of the cellulose at lower enzyme loadings.
|
140 |
Avaliação do carvão vegetal ativado e polímero vegetal na destoxificação do hidrolisado hemicelulósico de bagaço de cana-de-açúcar para a produção biotecnológica de xilitol / Evaluation of activated vegetal charcoal and vegetal polymer on the detoxification of the sugarcane hemicellulosic hydrolysate for biotechnological production of xylitolChaud, Luciana Cristina Silveira 29 April 2010 (has links)
A crescente demanda pelo etanol combustível para reduzir a dependência e promover a substituição de combustíveis fósseis, contribuirá para maior acúmulo de bagaço de cana no ambiente. Esta biomassa que é no Brasil um subproduto do setor sucroalcooleiro, embora venha sendo empregada para a geração de energia na produção de açúcar e álcool, pode ter seu aproveitamento alternativo para a obtenção de especialidades como o xilitol contribuindo para trazer vantagens econômicas para este setor. Neste sentido, pesquisas vêm sendo feitas para o aproveitamento biotecnológico do bagaço de cana para a produção de xilitol, um poliol com características peculiares como seu poder adoçante semelhante ao da sacarose, não cariogênico e indicado para diabéticos e obesos bem como no tratamento de doenças respiratórias e na prevenção de osteoporose. Sua produção comercial ocorre por catálise química da xilose proveniente de materiais lignocelulósicos ricos em xilana o que é de custo elevado. Para a obtenção biotecnológica de xilitol a partir destes materiais, inicialmente é necessária a desconstrução da matriz polimérica destes para a separação de suas principais frações: celulose, hemicelulose e ligninina. No caso do xilitol, a fração de interesse é a hemicelulose por ser constituída principalmente da pentose xilose, substrato para este bioprocesso. A hidrólise ácida diluída tem sido comumente empregada nas pesquisas para a obtenção do hidrolisado hemicelulósico rico em xilose. Entretanto, neste processo ocorre também a liberação/formação de compostos tóxicos aos micro-organismos, inibidores de atividades enzimáticas como fenólicos, ácidos orgânicos, furfural, hidroximetilfurfural além de íons metálicos. No presente trabalho, foram empregadas duas metodologias de destoxificação do hidrolisado hemicelulósico de bagaço de cana: elevação do pH para 7,0 com óxido de cálcio seguida do abaixamento para 2,5 com ácido fosfórico, combinada à adsorção em carvão vegetal ativado (1,0% p/v, 100rpm, 30 min. a 60°C); e floculação por polímero vegetal (15% p/v, 200rpm, 15min. a 25°C). Avaliação da eficácia destes procedimentos foi feita quanto à remoção de tóxicos e à fermentabilidade do hidrolisado, avaliada pela bioconversão de xilose em xilitol empregando a levedura Candida guiliermondii. De acordo com os resultados, a alteração de pH combinada à adsorção com carvão ativo propiciou maior remoção de compostos fenólicos (80%), com consequente favorecimento dos parâmetros fermentativos rendimento (YP/S=0,78g/g) e produtividade (QP=0,48g/L.h) de xilitol, enquanto a utilização de polímero levou à maior perda dos íons cromo e ferro (superior a 90%), além de níquel. Pela avaliação das atividades das enzimas xilose redutase (XR) e xilitol desidrogenase (XD), responsáveis pelos passos iniciais da bioconversão de xilose em xilitol, pode-se constatar que não há uma correlação entre as suas máximas atividades e a condição de maior remoção de tóxicos e máximos parâmetros fermentativos. Isto pode ser constatado pelo fato de que a máxima atividade da XR (0,446 U/mgprot) foi obtida no experimento controle no qual o hidrolisado foi submetido apenas ao ajuste de pH para a fermentação (pH=5,5) enquanto para a XD esta foi máxima (0,565 U/mgprot) com a utilização do polímero vegetal. / The increasing search for ethanol fuel in order to reduce the dependence and to promote the substitution of fossil fuels will contribute to higher accumulation of sugarcane bagasse in the environment. This biomass that in Brazil is a by-product of the sugar-alcohol mills, although it has been used for the generation of energy in the sugar and alcohol production, can also be used as alternative for obtainment of xylitol, contributing to bring economical advantages for sugar-alcohol mills. In this sense, researches has been performed for the biotechnological use of sugarcane bagasse for the production of xylitol, a polyol with peculiar characteristics like its sweetener power similar to that of saccharose, non-cariogenic and indicated for diabetics and obese people, as well in the treatment of respiratory diseases and in the osteoporosis prevention. Its commercial production occurs by chemical catalysis of the xylose from the rich-xylan lignocellulosic materials, which has high cost. For the biotechnological xylitol production from these materials, initially the polymeric matrix deconstruction is necessary for separation of their main fractions: the cellulose, hemicellulose and lignin. In the case of xylitol, the fraction of interest is the hemicellulose due to be constituted mainly of pentose xylose, substrate for this bioprocess. The diluted acid hydrolysis has been commonly used in the researches for the obtainment of rich-xylose hemicellulosic hydrolysates. However, in this bioprocess there is also the release/formation of toxic compounds to the microorganisms, inhibitors of enzymatic activities like phenolics, organic acids, furfural, hidroxymethilfurfural, besides metallic ions. In the present work, two detoxification methodologies for sugarcane bagasse hemicellulosic hydrolysate were used: increase of pH to 7,0 with calcium oxide, followed by the decrease to 2,5 with phosphoric acid combined with the active charcoal adsorption (1,0% w/v, 100rpm, 30min, 60°C); and vegetal polymer flocculation (15% w/v, 200rpm, 15min, 25ºC). The efficiency of these procedures was evaluated by the toxics removal analysis and the xylose-into-xylitol bioconversion using Candida guilliermondii yeast. According to the results, the pH alteration combined with the active charcoal adsorption provided higher phenolic compounds removal (80%) with consequent enhance of the fermentative parameters, yield (YP/S = 0,78g/g) and volumetric productivity (QP=0,48g/L.h) of xylitol, while vegetal polymer provide the greatest loss of ions chrome and iron (higher than 90%), beyond zinc. Evaluating the activities of the enzymes xylose reductase (XR) and xylitol dehydrogenase (XD), responsible for the initial steps of the xylose-into-xylitol bioconversion, it can be verified that there is not a correlation between their maximum activities and the condition of higher toxics removal and maximum fermentative parameters. This can be proved by the fact of the XR maximum activity (0,446 U/mgprot) was obtained in the control experiment, in which the hydrolysate was submitted only to pH adjustment for the fermentation (pH=5,5), while for XD this activity was maximum (0,565 U/mgprot) with use of vegetal polymer.
|
Page generated in 0.0904 seconds