• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation cinétique de l'hydroconversion catalytique de la lignine pour la production d'aromatiques / Kinetic modeling of catalytic lignin hydroconversion for aromatic production

Pu, Junjie 06 November 2018 (has links)
De nos jours, en raison de l'épuisement des combustibles fossiles et des préoccupations environnementales, la transformation de la biomasse lignocellulosique devient un gros challenge pour fournir des biocarburants et des bioproduits dans un futur proche. La lignine, qui représente près de 30 %pds de la biomasse lignocellulosique, est la bioressource la plus pertinente et la plus abondante pour produire des composés aromatiques grâce à sa structure polymérique composée d’unités phénylpropane avec des liaisons éthers. Dans ce contexte, l’utilisation de la lignine en tant que précurseur de composés aromatiques suscite beaucoup d’attention de par son faible coût et sa haute disponibilité puisque co-produit dans l’industrie papetière ou les bio-raffineries. Dans la littérature, il apparaît que l'hydroconversion catalytique de la lignine constitue une méthode thermochimique intéressante pour obtenir des rendements élevés en produits liquides. Le but de ce travail était d'étudier les processus réactionnels lors de ce procédé et de développer un modèle cinétique pour l'hydroconversion catalytique de la lignine sur un catalyseur sulfure (CoMoS/Al2O3). Dans la première partie de ce travail, des mesures cinétiques ont été effectuées dans un solvant donneur d’hydrogène (tétraline) à 350 °C et 80 bar en utilisant un réacteur semi-continu, ouvert en phase gazeuse avec l’alimentation continue en H2 et équipé d’un condenseur à reflux et de pièges refroidis. Les produits récupérés ont été isolés en quatre fractions : gaz (méthane, dioxyde de carbone, hydrocarbures légers, etc.), liquide organique (phénols, aromatiques, naphtènes, etc.), résidus solubles dans le THF et insolubles dans le THF. Grâce à plusieurs outils analytiques appropriés (GPC, RMN, GCXGC, etc.), l'évolution et la composition de ces différentes fractions en fonction du temps de réaction ont été étudiés afin de comprendre les transformations lors de la conversion. Un schéma réactionnel (approche regroupée) a été établi sur la base de ces observations. La deuxième partie de ce travail a été consacrée au développement d'un modèle cinétique paramétré permettant de décrire mathématiquement chaque étape de réaction au cours de l'hydroconversion de la lignine. Premièrement, les phénomènes physiques impliqués (comportement hydrodynamique des gaz dans notre installation, équilibre vapeur-liquide des mélanges et transfert de masse liquide gaz) ont été caractérisés. Par la suite, un modèle complet de réacteur a été construit en couplant la cinétique chimique appropriée et les caractérisations physiques. En prenant les données expérimentales recueillies comme base, des paramètres cinétiques fiables (constantes de vitesse et coefficients stoechiométriques) pour chaque étape de réaction ont été obtenus au moyen d'une technique de régression non linéaire. Le modèle résultant nous permet d'avoir une compréhension approfondie du processus de conversion de la lignine / Nowadays, due to the fossil fuels depletion and environmental concerns, transformation of lignocellulosic biomass is becoming a great challenge in order to provide biofuels and biochemicals in a near future. Lignin, which accounts for nearly 30 wt% of lignocellulosic biomass, is the most relevant and abundant bio-resource to produce aromatic compounds because of its original polymeric structure composed by phenylpropane units with ether linkages. In this context, the use of lignin as a precursor of aromatic compounds attracts lots of attention thanks to its low cost and high availability in pulp industry or bio-refinery. In the literature, it appears that an interesting thermochemical method for obtaining high yields of liquid products was the catalytic hydroconversion of lignin. The aim of this work was to investigate the reaction scheme of the catalytic process and develop a kinetic model for catalytic lignin hydroconversion over a sulfided CoMoS/Al2O3. In the first part of this work, kinetic measurements were carried out in a H-donor solvent (tetralin) at 350 °C and 80 bar using a semi-continuous batch reactor, which is opened for gas phase with continuous supply of H2 and equipped with a condensing reflux followed by cooled traps. The recovered products were isolated in four fractions: gases (methane, carbon dioxide, light hydrocarbons, etc.), organic liquid (phenols, aromatics, naphthenes, etc.), THF-soluble and THF-insoluble residues. Thanks to several appropriate analytical tools (GPC, NMR, GCXGC, etc.), the evolution of these different fractions as a function of reaction time was followed in order to understand the transformations occurring during the conversion. Accordingly, a lumped reaction network was established based on the observed reaction schemes. The second part of this work was dedicated to the development of a parameterized kinetic model allowing to have a mathematical description for each reaction step involved in the lignin hydroconversion. Firstly, physical phenomena involved (the gas hydrodynamic behavior of our set-up, the vapor-liquid equilibrium of mixtures and the liquid-gas mass transfer) were characterized. Subsequently, a complete reactor model was constructed by coupling the suitable chemical kinetics and these physical characterizations. Taking the gathered experimental data as a basis, reliable kinetic parameters (rate constants and stoichiometric coefficients) for each reaction step were obtained by means of non-linear regression technique. The resulting model allows us to have an in-depth understanding of the lignin conversion process
2

Aufbereitung schwefelwasserstoffhaltiger Wässer durch katalytische Oxidation an porphyrinmodifizierten kohlenstoffhaltigen Materialien

Donner, Jan 28 January 2009 (has links)
In ariden Gebieten tritt Schwefelwasserstoff häufig im Grundwasser auf, wodurch dessen Nutzung für die Trinkwassergewinnung aufgrund des störenden Geruchs und Geschmacks stark beeinträchtigt wird. Die in der Praxis oft eingesetzte Belüftung erweist sich zumeist als ineffizient und führt zu Geruchsbelästigungen in der Umgebungsluft. Das Ziel der Arbeit, die im Rahmen eines deutsch-israelischen Forschungsprojekts angefertigt wurde, bestand darin, einen wirksamen und für den praktischen Einsatz bei der Wasseraufbereitung geeigneten Katalysator zur Entfernung von Schwefelwasserstoff zu entwickeln, hinsichtlich verschiedener Verfahrensparameter und relevanter Randbedingungen durch systematische Batch- und Säulenversuche zu erproben und zu optimieren. Wichtige Kriterien zur Charakterisierung der Katalysatoren waren die Kinetik des Sulfidumsatzes, die Langzeitstabilität und die Zusammensetzung der Reaktionsprodukte. Die Nachahmung natürlich vorkommender Strukturen (z. B. Häm-Gruppe) und deren Anpassung an eine katalytische Sulfidoxidation war der Grundgedanke am Anfang der Arbeit. Entsprechende Materialien, organische Metallkomplexe (Porphyrine) auf Kohlenstoffträgern (Acetylen Black), wurden bereits erfolgreich bei der Sauerstoffreduktion in Brennstoffzellen eingesetzt. Cobalttetraphenylporphyrin (CoTPP) zeigte von allen getesteten Materialien die beste katalytische Wirksamkeit zur Sulfidoxidation. Die Sulfidumsetzung lief sowohl bei höheren pH-Werten als auch mit zunehmender Temperatur schneller ab. Anhand von Untersuchungen zum Einfluss des pH-Werts konnte bestätigt werden, dass eine katalytische Wirksamkeit nur für die Oxidation der Sulfid-Spezies HS- und S2- besteht. Mit Aktivkohle konnte ebenfalls eine katalytische Sulfidumsetzung erzielt werden, jedoch lag die Aktivität hier im Vergleich zum CoTPP deutlich niedriger. Bei allen getesteten katalytisch wirksamen Materialien entstand als vorrangiges Reaktionsprodukt Schwefel, gebildete Schwefel-Sauerstoff-Verbindungen wie Sulfat und Thiosulfat waren von untergeordneter Bedeutung. Die Untersuchungen zeigten, dass Acetylen Black aufgrund der sehr geringen Teilchengröße technisch kaum einsetzbar ist, weshalb weitere Trägermaterialien erprobt wurden. Im Gegensatz zu Aktivkohle oder Anthrazit erwiesen sich Weichfilze, insbesondere der Sigratherm Kohlenstoff-Weichfilz (KFA-Filz), als sehr gut geeignete Trägermaterialien. Beim Einsatz von Aktivkohle lagerte sich der gebildete Schwefel in den Porenräumen ab, was zu einer erheblichen Verringerung der katalytischen Aktivität führte. Dagegen wurde unter Verwendung des modifizierten Filzmaterials auch bei sehr langen Laufzeiten (bis 3000 Stunden) keine Abnahme der katalytischen Wirksamkeit beobachtet. Durch diese Katalysatormatrix konnte somit die Deaktivierung des Katalysators durch elementaren Schwefel verhindert werden. Bei abschließenden Versuchen unter Verwendung einer kleintechnischen Versuchsanlage konnte gezeigt werden, dass der Katalysator für den großtechnischen Einsatz geeignet ist. Im Vergleich zur Aktivkohle sind zwar größere Investitionskosten notwendig, andererseits können mit dem CoTPP-Material deutlich längere Laufzeiten realisiert werden. Aufgrund seiner guten technischen Handhabbarkeit ist der modifizierte KFA-Filz sowohl in kleinen dezentralen Anlagen (ländliche Siedlungen) als auch in größeren Wasserwerken einsetzbar. Zusätzliche Chemikalien sind für den Betrieb eines solchen Filters nicht erforderlich. Eine weitere Verbesserung der Sulfidentfernung wird bei langen Filterlaufzeiten durch sulfidoxidierende Bakterien bewirkt. Das Ziel, einen effizienten, technisch einsetzbaren Katalysator zur oxidativen Sulfidentfernung aus Wässern zu entwickeln, wurde somit erreicht. / Hydrogen sulfide often occurs in groundwater of arid areas. Because of its malodour, H2S containing water cannot be used as drinking water without treatment. Aeration as the most common treatment technique is less effective and leads to nasty odour of ambient air. Catalytic oxidation could be an alternative. The aim of this work was to develop and to optimize a technically applicable oxidation catalyst as well as to test its applicability under practical conditions. Various N4-chelates (e. g. porphyrins), which are frequently used for the reduction of oxygen in fuel cells, were evaluated for catalytic oxidation of sulfide at selected boundary conditions and process parameters using batch and column experiments. The new catalysts should be characterized in comparison with other materials. The oxidation kinetics, the long-time stability of the catalyst and the composition of oxidation products were the main criteria used for catalyst assessment. Cobalt tetraphenylporphyrin (CoTPP) showed the highest catalytic activity of all tested materials. The rate of sulfide transformation increased significantly with increasing temperature and at pH values higher than 6. A catalyst suitable for technical use in fixed-bed reactors was obtained by coating of a supporting material (carbon felt KFA) with the active substance. For all investigated materials, sulfur was found to be the main reaction product of the sulfide oxidation. In contrast to activated carbon, which showed catalytic activity for sulfide oxidation too, modified KFA felt materials were not blocked and deactivated by formed sulfur, even after long-term use. The new catalyst is well qualified for a stable oxidation of sulfide in water. In comparison to activated carbon, higher investment costs are required, but the carbon felt supported porphyrin has a significant longer lifetime. Because of its easy use, modified KFA felt is applicable both in small local plants and in large waterworks. There is no necessity to add chemicals or to install complex control equipment. As a positive side-effect, further improvement of sulfide elimination caused by sulfide-oxidizing bacteria was found during long filter run times.

Page generated in 0.0524 seconds