• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Chemical Synthesis and Ionic Conductivity of Water-Soluble Articulated Rigid-Rod Polyelectrolytes Derivatized with Sulfonated Ionomer Pendants

Du, Yue-Lin 15 February 2005 (has links)
Articulated rigid-rod polymers asPBI were synthesized via polycondensation reaction. Using 2-sulfoterephthalic acid and 5-sulfoisophthalic acid in different ratios for copolycondensation reaction making the fully conjugated rigid-rod backbone became articulated. Both rigid-rod and articulated rigid-rod were further derivatized using alkane sulfonated pendants and became water-soluble rigid-rod and articulated rigid-rod polyelectrolytes. Lithium salt doped cast films of the polyelectrolytes showed a root-temperature DC conductivity parallel to film surface (
2

Aspect Ratio Modulations of Fully Conjugated Rod-like Polymer Electrolyte for Enhanced Three-dimensionally Isotropic Ionic Conductivity

Wang, Jia-Huei 02 October 2009 (has links)
This study utilized polycondensation reaction to synthesize fully conjugated rod-like polymer dihydroxy-PBI. Chemical derivatizations were applied to attach pendants of propane sulfonic coil for dihydroxy-PBI-PS and to attach aromatic phenylene ring with Li ionic moiety for dihydroxy-PBI-AS. The attachment of pendants for dihydroxy-PBI-PS was 42.27 % and for dihydroxy-PBI-AS was only for 0.04 % causing by stereo hindrance of this molecule. These polymers seemed to have good thermal stability. Dihydroxy-PBI started to show degradation at 467.8 oC and retained 60.5 wt. % at 800 oC. Derivatized dihydroxy- PBI-PS and dihydroxy-PBI-AS lost their pendants at 295.3 oC and 314.4 oC, respectively. Dihydroxy-PBI was cast into thin film. Upon doping with lithium salt of LiClO at 2.02 wt. %, dihydroxy-PBI cast film showed the highest room-temperature dc conductivity parallel to the film (£m¡ü) of 1.71 x 10-4 S/cm and perpendicular to the film (£m¡æ) of 1.49 x 10-5 S/cm. For dihydroxy-PBI-PS cast film, the highest conductivity was at 0.49 wt. % of LiClO4 with £m¡ü of 1.05 x 10-3 S/cm and £m¡æ of 1.05 x 10-4 S/cm. For dihydroxy-PBI-AS cast film, the highest conductivity was at 2.02 wt. % of LiClO4 with £m¡ü of 1.32 x 10-3 S/cm and £m¡æ of 2.26 x 10-5 S/cm. From scanning electron microscopy and wide-angle x-ray scattering, it was learned that cast films of dihydroxy-PBI and dihydroxy-PBI-AS had anisotropic layered structure parallel to the film, and that of dihydroxy-PBI-PS showed less of this anisotropy.
3

Chemical Synthesis and Ionic Conductivity of Water-Soluble Rigid-Rod Solid Polyelectrolytes with Aspect Ratio and Pendant Modifications

Tsay, Pei-yun 06 September 2005 (has links)
Polycondensation reaction was carried out for synthesizing rigid-rod polymer hPBI. Various molar ratios (50:1, 25:1, and 15:1) of 2-hydroterephthalic acid and 5-hydroisophthalic acid were also introduced in the synthesis for articulated rigid-rod polymer a-hPBI. The polymers were further derivatized with 1,3-propanesulton for pendants of lithium ionomer to become water soluble polyelectrolytes hPBI-PS(Li+) and a-hPBI-PS(Li+), respectively. Lithium salt doped cast film of the rigid-rod polyelectrolyte hPBI-PS(Li+) showed a room-temperature DC conductivity parallel to film surface as high as 4.02¡Ñ10-3 S/cm. Molecular weight of the rigid-rod polyelectrolyte was low indicating a small molecular aspect ratio. In cast film, the molecules were randomly distributed and highly isotropic facilitated Li cations mobility for a high film conductivity. The conductivity was also insensitive to the anion of lithium salt. No apparent layered structure was revealed by scanning electron microscope suggesting that the cast films had near three-dimensionally isotropic structure and conductivity.

Page generated in 0.0711 seconds