• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stable sulfur isotope rations from West Antarctica and the Tien Shan Mountains : sulfur cycle characteristics from two environmentally distinct areas /

Pruett, Lee, January 2003 (has links) (PDF)
Thesis (M.S.) in Quaternary and Climate Studies--University of Maine, 2003. / Includes vita. Includes bibliographical references (leaves 54-62).
2

Protein sulfur

Koehler, Alfred E. January 1921 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1921. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 102-107).
3

Hydrogen production via a sulfur-sulfur thermochemical water-splitting cycle

AuYeung, Nicholas J. 14 October 2011 (has links)
Thermochemical water splitting cycles have been conceptualized and researched for over half a century, yet to this day none are commercially viable. The heavily studied Sulfur-Iodine cycle has been stalled in the early development stage due to a difficult HI-H₂O separation step and material compatibility issues. In an effort to avoid the azeotropic HI-H₂O mixture, an imidazolium-based ionic liquid was used as a reaction medium instead of water. Ionic liquids were selected based on their high solubility for SO₂, I₂, and tunable miscibility with water. The initial low temperature step of the Sulfur-Iodine cycle was successfully carried out in ionic liquid reaction medium. Kinetics of the reaction were investigated by I₂ colorimetry. The reaction also evolved H₂S gas, which led to the conceptual idea of a new Sulfur-Sulfur thermochemical cycle, shown below: / 4I₂(l)+4SO₂(l)+8H₂O(l)↔4H₂SO₄(l)+ 8HI(l) / 8HI(l)+H₂SO₄(l)↔ H₂S(g)+4H₂O(l)+4I₂(l) / 3H₂SO₄(g)↔ 3H₂O(g)+3SO₂(g)+1½O₂(g) / H₂S(g)+2H₂O(g)↔ SO₂(g)+3H₂(g) / The critical step in the Sulfur-Sulfur cycle is the steam reformation of H₂S. This highly endothermic step is shown to successfully occur at temperatures in excess of 800˚C in the presence of a molybdenum catalyst. A parametric study varying the H₂O:H₂S ratio, temperature, and residence time in a simple tubular quartz reactor was carried out and Arrhenius parameters were estimated. All reactive steps of the Sulfur-Sulfur cycle have been either demonstrated previously or demonstrated in this work. A theoretical heat-to-hydrogen thermal efficiency is estimated to be 55% at a hot temperature of 1100 K and 59% at 2000 K. As a highly efficient, all-fluid based thermochemical cycle, the Sulfur-Sulfur cycle has great potential for feasible process implementation for the transformation of high quality heat to chemical energy. / Graduation date: 2012
4

Using a membrane reactor for the sulfur-sulfur thermochemical water-splitting cycle

Knapp, Nathan Michael 13 December 2011 (has links)
The hydrogen economy is a possible component of an energy future based on use of alternative and renewable energy sources, deemed desirable from the general consensus of the worldwide community that we do not want to further exacerbate the climate problems that we have introduced over the last two centuries from burning fossil fuels. The burning of fossil fuels emits toxic pollutants into the air, such as sulfur compounds and oxidized forms of nitrogen (NOx) but also emit copious amounts of the inert carbon dioxide. The latter is widely recognized as the major cause of the global warming phenomenon. For a hydrogen economy to develop, efficient means of hydrogen generation are required. Thermochemical cycles were conceived in the 1960s but only one operating pilot plant and no commercial installations based on the processes have been built. In the present work the use of a membrane reactor to enable the newly conceived Sulfur-Sulfur cycle, based on equations 1 - 3 is modeled. / 4H₂O+4SO₂ -> H₂S + 3H₂SO₄ Eq. 1 / H₂SO₄ -> SO₂ + H₂O + 1/2O₂ Eq. 2 / H₂S + 2H₂O -> SO₂ + 3H₂ Eq. 3 / The rationale for the use of a membrane reactor to enable the cycle is based on enhancing extent of reaction beyond its predicted equilibrium point due to the severely unfavorable thermochemical parameters for the steam reforming of hydrogen sulfide reaction (Eq. 3 above) which has a low equilibrium concentration of products. The membrane reactor will employ a molybdenum sulfide catalyst driving the steam reformation of hydrogen sulfide reaction and simultaneous extraction of hydrogen (one of the products) will allowing for the reaction to occur to higher extent. A computational model of a catalytic membrane reactor was constructed using the well-known finite element model package Comsol v4.1 in which a catalytic microchannel reactor separated from a sweep gas by a thin hydrogen permeable membrane is built and parametric sweeps to evaluate the effect of membrane transport parameters, pressure and gas feed velocities are calculated. Though the steam reforming of hydrogen sulfide reaction has a competing thermal cracking reaction, the present work focuses on modeling one reaction only (the steam reformation reaction) for simplicity. Fully dense metallic membranes with chemselective permeability to hydrogen are modeled with transport parameters derived from reported literature values for similar applications. The results show that employing a membrane reactor does significantly affect the completeness of the reaction by product extraction (if you do run the model with membrane transport set to zero, compare the extent at zero with extent at 3.6x10⁻⁶ mol.s⁻¹.m⁻²). The effect of changing sweep gas velocity is contingent on membrane properties, and membranes with small diffusion coefficients severely limit the ability of extraction of hydrogen from the feed. Therefore, it is more important that membranes with very high hydrogen permeability be employed in designing a reactor to implement this process, allowing for effective hydrogen separation and high conversion of the reactants in the process. Reactor pressure has minimal effect on the extent of reaction and therefore reactors designed to implement the process may be designed to operate at close to ambient pressure. / Graduation date: 2012
5

SO4 in Cadmium Chalcogenides

Herklotz, Frank, Lavrov, Eduard V., Melnikov, Vladlen V. 11 June 2024 (has links)
A study combining infrared (IR) absorption spectroscopy and first-principles theory is presented for a sulfur–oxygen complex in CdSe characterized by IR absorption lines located at 1094, 1107, and 1126 cm-1 (10 K). The properties of the center are compared to a similar species occurring in CdTe that gives rise to two absorption lines at 1097 and 1108 cm-1 (10 K). Temperature- and polarization-sensitive measurements performed on 18O-enriched samples reveal that for both materials the IR absorption lines are due to split ν3 stretch vibrations of a distorted sulfate (SO4) tetrahedron, whereby the local point group of the SO4 complex is reduced to Cs and C3v in hexagonal CdSe and cubic CdTe, respectively. Measurements on the vibrational spectrum of the sulfate species in the spectral range of symmetric stretch (ν1), bend (ν4), and combinationmodes (ν1 þ ν3) are presented. The cation vacancy VCd is discussed as a likely site occupied by SO4 in CdSe.

Page generated in 0.0438 seconds