Spelling suggestions: "subject:"sulfurtransferases"" "subject:"sulfurtransferase""
1 |
Bile salt sulphation in man in vitro studies with special reference to enzymatic mechanisms of human bile salt sulphation /Lööf, Lars. January 1980 (has links)
Thesis--Uppsala.
|
2 |
Expressão, purificação e ensaio de atividade dos domínios DUF442 e ETHE1 da proteína Blh de Xylella fastidiosa e Agrobacterium tumefaciens / Expression, purification and activity assay of the DUF442 and ETHE1 of Blh protein of Xylella fastidiosa and Agrobacterium tumefaciensLira, Nayara Patricia Vieira de, 1988- 24 August 2018 (has links)
Orientador: Celso Eduardo Benedetti / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-24T14:13:17Z (GMT). No. of bitstreams: 1
Lira_NayaraPatriciaVieirade_M.pdf: 3098417 bytes, checksum: 6441392e6b6c275daba6bd89e88cbaf8 (MD5)
Previous issue date: 2014 / Resumo: Xylella fastidiosa e Agrobacterium tumefaciens são bactérias fitopatogênicas que infectam, respectivamente, o interior do xilema e de tecidos vasculares de raiz, ambientes cuja tensão de oxigênio é relativamente baixa. Uma vez que Xylella e Agrobacterium são bactérias estritamente aeróbicas, elas apresentam o operon bigR, responsável pela detoxificação do sulfeto de hidrogênio ou gás sulfídrico, um potente inibidor do citocromo c oxidase e respiração aeróbica. O operon bigR codifica cinco proteínas denominadas Blh (Beta-lactamase-like hydrolase), BigR (biofilm growth-associated repressor), um repressor transcricional e regulador do operon, e MP1-3, proteínas que compõem um transportador de membrana. Em trabalho anterior, foi demonstrado que mutantes de Agrobacterium deficientes na produção de Blh acumulavam gás sulfídrico, enquanto mutantes no repressor BigR secretavam mais sulfito, indicando que a proteína Blh convertia gás sulfídrico em sulfito e que este, que também é tóxico, seria exportado pelo complexo MP1-3. Além disso, dados de modelagem molecular indicaram que Blh poderia desempenhar funções de sulfotransferase e dioxigenase de enxofre, uma vez que apresenta os domínios DUF442 (rodanase) e ETHE1 (dioxigenase). A fim de testar tais hipóteses, este trabalho teve como principais objetivos a caracterização enzimática dos domínios DUF442 e ETHE1 da Blh de Xylella e Agrobacterium, como também confirmar interações proteína-proteína entre os componentes do operon bigR. Ensaios de atividade enzimática usando-se proteínas recombinantes purificadas confirmaram a função de dioxigenase de enxofre e de rodanase dos domínios ETHE1 e DUF442, respectivamente. Além disso, verificou-se que ambos os domínios produzem sulfito como produto final da reação, embora atuando em substratos diferentes. Ainda, ensaios de duplo híbrido de levedura mostraram haver inúmeras interações entre as proteínas do operon bigR, mas não entre os dois domínios DUF442 e ETHE1 de Blh que, de acordo com os ensaios enzimáticos, atuam de forma independente. / Abstract: Xylella fastidiosa and Agrobacterium tumefaciens are phytopathogenic bacteria that infect, respectively, the xylem vessels and root vascular tissues, where the oxygen tension is relatively lower. Since Xylella and Agrobacterium are strict aerobic organisms, they use the bigR operon for the detoxification of hydrogen sulfide, a potent inhibitor of cytochrome c oxidase and aerobic respiration. The bigR operon encodes five proteins designated Blh (Beta-lactamase-like hydrolase), BigR (biofilm growth-associated repressor), a transcriptional repressor that regulates the operon, and MP1-3, proteins that act as a membrane transporter. In a previous work, it was shown that Agrobacterium mutants deficient in Blh production accumulated hydrogen sulfide, whereas BigR-deficient mutants secreted sulfite at higher levels than the wild type bacteria, indicating that Blh converted hydrogen sulfide into sulfite, which would be exported by the MP1-3 complex. In addition, molecular modeling indicated that Blh could function as a sulfur transferase and sulfur dioxigenase, since it carries a DUF442 (rhodanese) and ETHE1 (dioxygenase) domains. To test such hypothesis, this work aimed to demonstrate the enzymatic activities of the DUF442 and ETHE1 domains of Blh from Xylella and Agrobacterium, as well as to confirm protein-protein interactions between components of the bigR operon. Enzyme activity assays using the purified proteins confirmed the sulfur dioxygenase and rhodanese activities of the ETHE1 and DUF442 domains, respectively. In addition, it was found that both domains produce sulfite as a final product, although having different substrates. Furthermore, yeast two-hybrid assays showed that many of the bigR operon proteins interact with each other, suggesting the formation of a protein complex. However, no physical interactions were detected between DUF442 and ETHE1 domains, which, according to the enzyme activity assays, act independently. / Mestrado / Microbiologia / Mestra em Genética e Biologia Molecular
|
3 |
Les thioltransférases, des agents doubles impliqués dans le métabolisme du sulfure d’hydrogène : de la catalyse aux rôles physiologiques / Thioltransferases, double agents involved in the hydrogen sulfide metabolism : from the catalysis to the physiological rolesLec, Jean-Christophe 17 November 2017 (has links)
Les 3-mercaptopyruvate sulfurtransférases (3-MST) et les thiosulfate sulfurtransférases (TST) sont des enzymes ubiquitaires de la famille des thioltransférases à domaine rhodanèse qui catalysent le transfert d’un atome de soufre d’un substrat donneur vers un substrat accepteur via un intermédiaire Cys-persulfure. Les 3-MST sont impliquées dans la formation de sulfure d’hydrogène (H2S), un gazotransmetteur toxique à forte concentration, alors que les TST interviendraient dans son élimination. L’objectif de mon projet était de décrypter les mécanismes moléculaires impliquant ces thioltransférases afin de mieux comprendre leurs rôles physiologiques. Pour cela, le mécanisme catalytique et les spécificités de substrats des enzymes humaines (3-MST, TSTD1 et Rhodanèse) et d’Escherichia coli (3-MST et GlpE) ont été caractérisés grâce à la mise au point de méthodes spécifiques permettant l’étude de chacune des étapes du mécanisme (fluorescence, stopped-flow, sonde H2S) et par une étude des relations structure-fonction menée en collaboration pour les aspects chimie théorique et cristallographie RX. J’ai montré que le site actif de ces enzymes est adapté à la catalyse d’un transfert de S0 à partir de composés soufrés non activés. De plus, le mécanisme de formation de l’intermédiaire persulfure ne dépend pas de l’enzyme mais du substrat donneur. En effet, la rupture de la liaison C-S du 3-mercaptopyruvate requiert la déprotonation des fonctions thiols du substrat et de la Cys essentielle, fonction assurée par la boucle catalytique CysX5 qui constitue un véritable site de reconnaissance thiolate, et l’intervention concomitante d’une molécule d’eau comme catalyseur acide. En présence de thiosulfate, hormis l’activation de la Cys seule la neutralisation des charges négatives du substrat est indispensable à la réaction de transfert de soufre. Enfin, et de façon inattendue, la 3-MST humaine pourrait être impliquée dans l’élimination cytosolique du sulfite, un composé toxique pour les cellules. Quant aux deux TST mitochondriales humaines, elles pourraient intervenir à la fois dans la signalisation cellulaire H2S-dépendante, via la production d’espèces polysulfure, et dans l’élimination d’H2S / 3-mercaptopyruvate sulfurtransferases (3-MSTs) and thiosulfate sulfurtransferases (TSTs) are ubiquitous enzymes that belong to the rhodanese sulfurtransferase family and catalyze the transfer of a sulfur atom from a donor to an acceptor substrate via a cysteine-persulfide intermediate. While 3-MSTs are involved in the biogenesis of hydrogen sulfide (H2S), a gasotransmitter known to be toxic at high concentration, TSTs are likely responsible of its degradation. My project mainly focused on deciphering the sulfurtransferase-dependent molecular mechanisms to better define their physiological functions. To address these questions, their catalytic mechanisms and substrate specificities were investigated. This was achieved through the development of kinetic approaches (fluorescence, stopped-flow, H2S specific probe) to study each step of the reaction catalyzed by human (3-MST, TSTD1 and Rhodanese) and Escherichia coli (3-MST, GlpE) enzymes and structure-function relationship studies performed in collaboration for the theoretical chemistry and the X-ray crystallography parts. Here, I show that the active site of these enzymes is optimized to perform an efficient S0 transfer from non-activated sulfur compounds. Moreover, the mechanisms leading to formation of the persulfide intermediate do not depend on the enzyme but rather on the donor substrate. Indeed, the cleavage of the carbon-sulfur bond of 3-mercaptopyruvate critically depends on the CysX5 catalytic loop acting as a thiolate hole to favor the deprotonation of the essential Cys and the substrate, and on a water-mediated protonation step. In the presence of thiosulfate, the Cys activation mode remains unchanged and the reaction of sulfur transfer is only driven by the neutralization of the negative charges of the substrate. In addition, we propose a new physiological function for the human 3-MST in the cytoplasmic elimination of sulfite, a toxic compound for the cells. Finally, the two human mitochondrial TSTs are likely to be involved in the H2S-mediated cellular signaling, through the formation of polysulfide entities, but also in H2S catabolism
|
Page generated in 0.0545 seconds