• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 7
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Coordinated multi-antenna techniques for cellular networks:Pilot signaling and decentralized optimization in TDD mode

Komulainen, P. (Petri) 19 November 2013 (has links)
Abstract This thesis concentrates on the design and evaluation of spatial user multiplexing methods via linear transmit-receive processing for wireless cellular multi-user multiple-input multiple-output (MIMO) communication systems operating in the time-division duplexing (TDD) mode. The main focus is on the acquisition of effective channel state information (CSI) that facilitates decentralized processing so that the network nodes – base stations (BS) and user terminals (UT), each employing an arbitrary number of antenna elements – are able to locally participate in the network adaptation. The proposed methods rely on the uplink-downlink channel reciprocity and spatially precoded over-the-air pilot signaling. Considering (single-cell) multi-user MIMO systems, coordinated zero-forcing transmit-receive processing schemes for the uplink (UL) are proposed. The BS computes the transmission parameters in a centralized manner and employs downlink (DL) pilot signals to convey the information of the beamformers to be used by the UTs. When coexisting with the DL zero-forcing, the precoded DL demodulation pilots can be reused for UL beam allocation, and the precoded UL demodulation pilots are reused in turn for partial channel sounding (CS). As a result, only the precoded pilot symbols are needed in both UL and DL. Moreover, a concept for reducing the number of the required orthogonal UL CS pilot resources is presented. Based on their DL channel knowledge, the multi-antenna UTs form fewer pilot beams by spatial precoding than conventionally needed when transmitting antenna-specific pilots. In the context of DL zero-forcing, when taking into account the CSI estimation error at the BS, the overhead reduction turns out to improve robustness and increase the average system capacity. Considering multi-cell multi-user MIMO systems, decentralized coordinated DL beamforming strategies based on weighted sum rate (WSR) maximization are proposed. An optimization framework where the WSR maximization is carried out via weighted sum mean-squared-error minimization is utilized, and the approach is generalized by employing antenna-specific transmit power constraints. The iterative processing consists of optimization steps that are run locally by the BSs. In one novel strategy, the coordinating cells update their transmit precoders and receivers one cell at a time, which guarantees monotonic convergence of the network-wide problem. The strategy employs separate uplink CS and busy burst pilot signaling to reveal the effective channels of the UTs to the neighboring BSs. In another novel strategy, the monotonic convergence is sacrificed to devise a faster scheme where the BSs are allowed to optimize their variables in parallel based on just the CS responses and additional low-rate backhaul information exchange. The numerical results demonstrate that WSR maximization has the desirable property that spatial user scheduling is carried out implicitly. Finally, methods for UL CS overhead reduction are presented, and the effect of CSI uncertainty is addressed. / Tiivistelmä Tämä väitöskirja keskittyy lineaarisella lähetys- ja vastaanottoprosessoinnilla toteutettavien tilajakomonikäyttömenetelmien suunnitteluun ja arviointiin langattomissa moniantennisissa solukkoverkoissa, jotka hyödyntävät aikajakodupleksointia (TDD). Erityisesti tarkastellaan efektiivisen kanavatiedon hankintaa, joka mahdollistaa hajautetun prosessoinnin siten että verkkoelementit – tukiasemat ja terminaalit, jotka kukin hyödyntävät useaa antennielementtiä – voivat osallistua paikallisesti verkon adaptaatioon. Esitetyt menetelmät perustuvat ylä- ja alalinkin kanavien resiprookkisuuteen ja tilatasossa esikoodattuun opetus- eli pilottisignalointiin ilmarajapinnan yli. Yksisoluisille monikäyttäjä- ja moniantennijärjestelmille esitetään ylälinkin koordinoituja nollaanpakottavia lähetys- ja vastaanottomenetelmiä. Tukiasema laskee lähetysparametrit keskitetysti ja käyttää pilottisignaaleja kertomaan millaista lähetyskeilanmuodostusta terminaalien tulee käyttää. Alalinkin nollaanpakotuksen yhteydessä esikoodattuja demodulaatiopilotteja voidaan uudelleenkäyttää ylälinkin lähetyskeilojen allokointiin, ja esikoodattuja ylälinkin demodulaatiopilotteja uudelleenkäytetään puolestaan osittaiseen kanavan luotaukseen (sounding). Näin ollen molempiin suuntiin tarvitaan vain esikoodatut pilotit. Lisäksi työssä esitetään menetelmä ylälinkin luotauspilottiresurssitarpeen vähentämiseksi. Kanavatietoon perustuen moniantenniset terminaalit muodostavat tilatasossa esikoodattuja pilottilähetyskeiloja, joita tarvitaan vähemmän kuin perinteisiä antennikohtaisia pilotteja. Kun otetaan huomioon kanavanestimointivirhe tukiasemassa, resurssiensäästömenetelmä parantaa häiriösietoisuutta ja nostaa järjestelmän keskimääräistä kapasiteettia alalinkin nollaanpakotuksen yhteydessä. Monisoluisille monikäyttäjä- ja moniantennijärjestelmille esitetään hajautettuja koordinoituja alalinkin keilanmuodostusstrategioita, jotka perustuvat painotetun summadatanopeuden (WSR) maksimointiin. Valitussa optimointikehyksessä WSR:n maksimointi toteutetaan painotetun summaneliövirheen minimoinnin kautta, ja työssä menettelytapa yleistetään antennikohtaisten lähetystehorajoitusten tapaukseen. Iteratiivinen prosessointi koostuu optimointiaskelista, jotka tukiasemat paikallisesti suorittavat. Yhdessä esitetyssä strategiassa yhteistoiminnalliset solut päivittävät lähettimensä ja vastaanottimensa yksi solu kerrallaan, mikä takaa verkonlaajuisen ongelmanratkaisun monotonisen konvergenssin. Tämä strategia käyttää erillisiä ylälinkin luotaussignaaleja sekä varattu-signaaleja ilmaistakseen terminaalien efektiiviset kanavat naapuritukiasemille. Toisessa strategiassa monotoninen konvergenssi uhrataan ja kehitetään nopeammin adaptoituva menetelmä, jossa tukiasemat saavat optimoida muuttujansa rinnakkain, perustuen vain luotaussignaaleihin ja tukiasemien väliseen informaationvaihtoon. Numeeriset tulokset osoittavat, että WSR:n maksimointi toteuttaa aktiivisten käyttäjien valinnan tilatasossa implisiittisesti. Lopuksi esitetään menetelmiä luotauspilottiresurssitarpeen vähentämiseksi ja käsitellään kanavatiedon epävarmuuden vaikutusta.
12

Optimization in cognitive radio systems with successive interference cancellation and relaying / Optimisation des systèmes cognitifs avec annulation successive d'interférence et relayage

Chami, Marwa 12 May 2016 (has links)
La Radio Cognitive (CR) est une technique prometteuse pour assurer une utilisation efficace du spectre. Elle permet à un utilisateur non licencié appelé utilisateur secondaire (SU) de coexister avec un utilisateur agréé appelé utilisateur primaire (PU) sans dégrader les performances du dernier. Dans un système de CR, le SU a la capacité de s'adapter à son environnement afin de détecter des trous de fréquences possibles dans le spectre et transmettre dans ces trous sous certaines contraintes de manière à augmenter le débit total. Par ailleurs, l'allocation des ressources dans les systèmes CR forme l'un des scénarios étudiés les plus courantes en particulier pour des transmissions à porteuses multiples.Dans cette thèse, nous étudions le problème d'allocation des ressources pour un système CR à multi-utilisateur pour une transmission de liaison montante. On considère le scénario underlay où le SU est autorisé à coexister avec le PU à condition que l'interférence causé au PU soit inférieure à un seuil prédéfini. Nous appliquons deux techniques de décodage, l'annulation successive d'interférence (SIC) et le codage à superposition (SC), au SU afin de maximiser le débit secondaire.Dans une première étape, le scénario mono-utilisateur est étudié, en supposant que les informations d'état de canal sont connues parfaitement au SU. Nous évaluons la performance du système en proposant un algorithme de décodage adaptatif où le SU peut soit traiter l'interférence venant du primaire comme du bruit, ou bien appliquer le SIC ou SC. Nous étudions le problème d'allocation de puissance en tenant compte du budget de puissance et des contraintes de seuil d'interférence. Une solution générale pour le problème d'optimisation est proposé. L'analyse des simulations et les résultats théoriques montrent que l'algorithme proposé assure une augmentation sur le débit total du système.Ensuite, le scénario multi-utilisateurs secondaires est étudié, où plusieurs utilisateurs sont autorisés à exister dans la cellule secondaire. Les problème d'allocation de puissance et de sous-porteuses sont détaillés dans le but de maximiser le débit. Nous mettons en évidence les avantages de l'algorithme adaptatif dans le cas multi-utilisateur, qui comprend trois phases. La première étape comprend la sélection adaptative de la stratégie de décodage au niveau du récepteur secondaire. La deuxième étape décrit l'attribution de sous-porteuses parmi les différents utilisateurs. Enfin, la troisième étape détaille la répartition optimale du budget de puissance disponible sur les utilisateurs.Cependant, la connaissance parfaite du canal nécessite des mesures de canal parfait au niveau du récepteur et un lien de rétroaction parfaite pour envoyer ces informations à l'émetteur, ce qui peut être impossible à mettre en œuvre. Ainsi, nous étudions aussi le scénario mono-utilisateur en supposant que juste la connaissance statistique des gains de canaux primaires est disponible au SU. Nous détaillons les expressions analytiques pour les probabilités de panne et nous résolvons le problème d'optimisation non-convexe en utilisant un algorithme d'approximation séquentielle. Les simulations montrent que l'algorithme proposé est efficace et robuste.Enfin, nous proposons un nouveau modèle de système où le récepteur secondaire peut agir comme un nœud de relayage Full-Duplex (FD) afin de maximiser le débit primaire. Le scénario proposé est d'abord étudié pour un schéma de modulation à mono-porteuse dans les cas Amplify-and-Forward (AF) et Decode-and-Forward (DF). Les contraintes pour appliquer le SIC et pour le relayage sont déterminés et les nouveaux débits réalisables sont spécifiés de telle sorte que le nœud de relayage relaie si le nouveau débit atteignable est meilleur que celui obtenu sans relayage. En outre, le scénario FD avec DF est étudié avec la modulation multi-porteuse et les performances de ce modèle sont évaluées. Une amélioration importante sur le débit primaire est affiché. / Cognitive Radio (CR) is a promising technique for efficient spectrum utilization. The CR technology permits an unlicensed user called Secondary User (SU) to coexist with the licensed user called Primary User (PU) without degrading his performance. In a CR system, the SU has the ability to sense and adapt to his environment in order to detect possible frequency holes in the wireless spectrum and transmit in it under some constraints so as to increase the total data rate. Besides, resource allocation in CR systems is one of the most common studied scenarios especially for multi-carrier transmissions, with the aim to maximize the system throughput.In this thesis, we investigate the resource allocation problem for an uplink multi-user underlay CR system where the SU is allowed to coexist with the PU provided that the interference caused to the PU is below a predefined threshold. We apply two decoding techniques, Successive Interference Cancellation (SIC) and Superposition Coding (SC), at the SU in order to maximize the secondary rate. In a first step, the single-user scenario is studied, assuming perfect channel state information (CSI) at the SU. We evaluate the performance of the system by proposing an adaptive decoding algorithm where the SU can either treat the interference as noise or perform SIC or SC. We investigate the power allocation problem taking into account the power budget and the interference threshold constraints. A general solution for the power optimization problem in an uplink underlay CR system is proposed. Both theoretical analysis and simulation results show that the proposed algorithm achieves higher sum rate than classical algorithms, providing high-enough data rates for the secondary system at the expense of a very low degradation of the primary system's rate.Then, the secondary multi-user scenario is investigated, where multiple users are allowed to exist in the secondary cell. Power and subcarrier allocation problems are detailed in order to maximize the secondary rate. We highlight the benefits of the proposed multi-user adaptive algorithm which encompasses three phases. The first step includes the adaptive selection of the decoding strategy at the secondary receiver. The second step describes the subcarrier allocation among the different users. Finally, the third step details the optimal distribution of the available power budget on the users.However, perfect channel knowledge requires perfect channel measurements at the receiver and a perfect feedback link to send this channel information to the transmitter, which may be impractical to implement. Thus, we also study the single-user scenario assuming that only statistical CSI of channel gains between the primary transmitter and both primary and secondary receivers is available at the SU. We detail the analytical expressions for the outage probabilities and then we solve the non-convex optimization problem using a sequential approximation algorithm. simulations show that the proposed algorithm is efficient and robust with statistical CSI. This work can be easily extended to the multi-user case.Finally, we propose a new system model where the secondary receiver acts as a Full-Duplex (FD) relay node in order to maximize the primary rate and thus the total system rate. The proposed scenario is first studied for single-carrier modulation scheme for both Amplify-and-Forward (AF) and Decode-and-Forward (DF) relaying protocols. The constraints to apply SIC and to relay are determined and the new achievable rates are specified such that the relay node relays whenever the new achievable rate is better than the one achieved without relying. Furthermore, the performance of the DF relaying scheme in the FD mode is evaluated for multi-carrier modulation. The performance of the proposed system model is evaluated via simulations and an important improvement of the primary achievable rate and thus of the total system rate is shown.
13

Hardware Distortion-Aware Beamforming for MIMO Systems / Hårdvaruförvrängningsmedveten strålformning för MIMO-system

Khorsandmanesh, Yasaman January 2024 (has links)
In the upcoming era of communication systems, there is an anticipated shift towards using lower-grade hardware components to optimize size, cost, and power consumption. This shift is particularly beneficial for multiple-input multiple-output (MIMO) systems and internet-of-things devices, which require numerous components and extended battery lifes. However, using lower-grade components introduces impairments, including various non-linear and time-varying distortions affecting communication signals. Traditionally, these distortions have been treated as additional noise due to the lack of a rigorous theory. This thesis explores new perspective on how distortion structure can be exploited to optimize communication performance. We investigate the problem of distortion-aware beamforming in various scenarios.  In the first part of this thesis, we focus on systems with limited fronthaul capacity. We propose an optimized linear precoding for advanced antenna systems (AAS) operating at a 5G base station (BS) within the constraints of a limited fronthaul capacity, modeled by a quantizer. The proposed novel precoding minimizes the mean-squared error (MSE) at the receiver side using a sphere decoding (SD) approach.  After analyzing MSE minimization, a new linear precoding design is proposed to maximize the sum rate of the same system in the second part of this thesis. The latter problem is solved by a novel iterative algorithm inspired by the classical weighted minimum mean square error (WMMSE) approach. Additionally, a heuristic quantization-aware precoding method with lower computational complexity is presented, showing that it outperforms the quantization-unaware baseline. This baseline is an optimized infinite-resolution precoding which is then quantized. This study reveals that it is possible to double the sum rate at high SNR by selecting weights and precoding matrices that are quantization-aware.  In the third part and final part of this thesis, we focus on the signaling problem in mobile millimeter-wave (mmWave) communication. The challenge of mmWave systems is the rapid fading variations and extensive pilot signaling. We explore the frequency of updating the combining matrix in a wideband mmWave point-to-point MIMO under user equipment (UE) mobility. The concept of beam coherence time is introduced to quantify the frequency at which the UE must update its downlink receive combining matrix. The study demonstrates that the beam coherence time can be even hundreds of times larger than the channel coherence time of small-scale fading. Simulations validate that the proposed lower bound on this defined concept guarantees no more than 50 \% loss of received signal gain (SG). / I den kommande eran av kommunikationssystem finns det en förväntad förändringmot att använda hårdvarukomponenter av lägre kvalitet för att optimera storlek, kostnad och strömförbrukning. Denna förändring är särskilt fördelaktig för MIMO-system(multiple-input multiple-output) och internet-of-things-enheter, som kräver många komponenter och förlängd batteritid. Användning av komponenter av lägre kvalitet medfördock försämringar, inklusive olika icke-linjära och tidsvarierande förvrängningar sompåverkar kommunikationssignaler. Traditionellt har dessa förvrängningar behandlatssom extra brus på grund av avsaknaden av en rigorös teori. Denna avhandling utforskarett nytt perspektiv på hur distorsionsstruktur kan utnyttjas för att optimera kommunikationsprestanda. Vi undersöker problemet med distorsionsmedveten strålformning iolika scenarier. I den första delen av detta examensarbete fokuserar vi på system med begränsadfronthaulkapacitet. Vi föreslår en optimerad linjär förkodning för avancerade antennsystem (AAS) som arbetar vid en 5G-basstation (BS) inom begränsningarna av en begränsad fronthaulkapacitet, modellerad av en kvantiserare. Den föreslagna nya förkodningen minimerar medelkvadratfelet (MSE) på mottagarsidan med användning av ensfäravkodningsmetod (SD). Efter att ha analyserat MSE-minimering, föreslås en ny linjär förkodningsdesignför att maximera summahastigheten för samma system i den andra delen av dennaavhandling. Det senare problemet löses av en ny iterativ algoritm inspirerad av denklassiska vägda minsta medelkvadratfel (WMMSE)-metoden. Dessutom presenterasen heuristisk kvantiseringsmedveten förkodningsmetod med lägre beräkningskomplexitet, som visar att den överträffar den kvantiseringsomedvetna baslinjen. Denna baslinje är en optimerad förkodning med oändlig upplösning som sedan kvantiseras. Dennastudie avslöjar att det är möjligt att fördubbla summahastigheten vid hög SNR genomatt välja vikter och förkodningsmatriser som är kvantiseringsmedvetna. I den tredje delen och sista delen av denna avhandling fokuserar vi på signaleringsproblemet i mobil millimetervågskommunikation (mmWave). Utmaningen medmmWave-system är de snabba blekningsvariationerna och omfattande pilotsignalering.Vi utforskar frekvensen av att uppdatera den kombinerande matrisen i en bredbandsmmWave punkt-till-punkt MIMO under användarutrustning (UE) mobilitet. Konceptet med strålkoherenstid introduceras för att kvantifiera frekvensen vid vilken UE:nmåste uppdatera sin nedlänksmottagningskombinationsmatris. Studien visar att strålkoherenstiden kan vara till och med hundratals gånger större än kanalkoherenstiden försmåskalig fädning. Simuleringar bekräftar att den föreslagna nedre gränsen för dettadefinierade koncept inte garanterar mer än 50 % förlust av mottagen signalförstärkning(SG) / <p>QC 20240219</p>

Page generated in 0.05 seconds