• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 22
  • 15
  • 14
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Analysis of Cognitive Radio Networks under Spectrum Sharing and Security Constraints

Sibomana, Louis January 2016 (has links)
The cognitive radio network (CRN) concept has been proposed as a solution to the growing demand and underutilization of the radio spectrum. To improve the radio spectrum utilization, CRN technology allows the coexistence of licensed and unlicensed systems over the same spectrum. In an underlay spectrum sharing system, secondary users (SUs) transmit simultaneously with the primary users (PUs) in the same frequency band given that the interference caused by the SU to the PU remains below a tolerable interference limit. Besides the transmission power limitation, a secondary network is subject to distinct channel impairments such as fading and interference from the primary transmissions. Also, CRNs face new security threats and challenges due to their unique cognitive characteristics.This thesis analyzes the performance of underlay CRNs and underlay cognitive relay networks under spectrum sharing constraints and security constraints. Distinct SU transmit power policies are obtained considering various interference constraints such as PU outage constraint or PU peak interference power constraint. The thesis is divided into an introduction and two research parts based on peer-reviewed publications. The introduction provides an overview of radio spectrum management, basic concepts of CRNs, and physical layer security. In the first research part, we study the performance of underlay CRNs with emphasis on a multiuser environment.In Part I-A, we consider a secondary network with delay-tolerant applications and analyze the ergodic capacity. Part I-B analyzes the secondary outage capacity which characterises the maximum data rate that can be achieved over a channel for a given outage probability. In Part I-C, we consider a secondary network with delay constrained applications, and derive expressions of the outage probability and delay-limited throughput. Part I-D presents a queueing model that provides an analytical tool to evaluate the secondary packet-level performance with multiple classes of traffic considering general interarrival and service time distributions. Analytical expressions of the SU average packet transmission time, waiting time in the queue, andtime spent in the system are provided.In the second research part, we analyze the physical layer security for underlay CRNs and underlay cognitive relay networks. Analytical expressions of the probability of non-zero secrecy capacity and secrecy outage probability are derived.Part II-A considers a single hop underlay CRN in the presence of multiple eavesdroppers (EAVs) and multiple SU-Rxs. In Part II-B, an underlay cognitive relay network in the presence of multiple secondary relays and multiple EAVs is studied.Numerical examples illustrate that it is possible to exploit the physical layer characteristics to achieve both security and quality of service in CRNs while satisfying spectrum sharing constraints.
2

On the Capacity of Underlay Cognitive Radio Systems

Sboui, Lokman 05 May 2013 (has links)
Due to the scarcity of frequency spectrum in view of the evolution of wireless communication technologies, the cognitive radio (CR) concept has been introduced to efficiently exploit the available spectrum. This concept consists in introducing unlicensed/secondary users (SU’s) in existing networks to share the spectrum of licensed/primary users (PU’s) without harming primary communications hence the name of “spectrum sharing” technique. We study in this dissertation, the capacity and the achievable rate of the secondary user within various communication settings. We, firstly, investigate the capacity of the (SU’s) at low power regime for Nakagami fading channels and present closed form of the capacity under various types of interference and/or power constraints. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link ergodic capacity. Interestingly, we show that the low power regime analysis provides a specific insight on the capacity behavior of CR that has not been reported by previous studies. Next, we determine the spectral efficiency gain of an uplink CR Multi-Input Multi- Output (MIMO) system in which the SU is allowed to share the spectrum with the PU using a specific precoding scheme to communicate with a common receiver. Applied to Rayleigh fading channels, we show, through numerical results, that our proposed scheme enhances considerably the cognitive achievable rate. For instance, in case of a perfect detection of the PU signal, after applying Successive Interference Cancellation (SIC), the CR rate remains non-zero for high Signal to Noise Ratio (SNR) which is usually impossible when we only use space alignment technique. In addition, we show that the rate gain is proportional to the allowed interference threshold by providing a fixed rate even in the high SNR range. Finally, we study the impact of the broadcast approach and multi-layer coding on the throughput of CR systems for general fading channels. And we found that at the absence of the channel state information(CSI), we show that this improvement could be almost reached by 2-Layers coding. Then, we introduce a quantized CSI policy and highlight its improvement in terms of throughput before we study the rate when BA with quantized CSI is adopted. Numerical results show that the improvement of the additional layers is decreasing as the number of quantized regions increases.
3

Threshold Based Opportunistic Scheduling of Secondary Users in Underlay Cognitive Radio Networks

Song, Yao 12 1900 (has links)
In underlay cognitive radio networks, secondary users can share the spectrum with primary users as long as the interference caused by the secondary users to primary users is below a certain predetermined threshold. It is reasonable to assume that there is always a large pool of secondary users trying to access the channel, which can be occupied by only one secondary user at a given time. As a result, a multi-user scheduling problem arises among the secondary users. In this thesis, by manipulating basic schemes based on selective multi-user diversity, normalized thresholding, transmission power control, and opportunistic round robin, we propose and analyze eight scheduling schemes of secondary users in an underlay cognitive radio set-up. The system performance of these schemes is quantified by using various performance metrics such as the average system capacity, normalized average feedback load, scheduling outage probability, and system fairness of access. In our proposed schemes, the best user out of all the secondary users in the system is picked to transmit at each given time slot in order to maximize the average system capacity. Two thresholds are used in the two rounds of the selection process to determine the best user. The first threshold is raised by the power constraint from the primary user. The second threshold, which can be adjusted by us, is introduced to reduce the feedback load. The overall system performance is therefore dependent on the choice of these two thresholds and the number of users in the system given the channel conditions for all the users. In this thesis, by deriving analytical formulas and presenting numerical examples, we try to provide insights of the relationship between the performance metrics and the involved parameters including two selection thresholds and the number of active users in the system, in an effort to maximize the average system capacity as well as satisfy the requirements of scheduling outage probability and feedback load.
4

Spectral-efficient design in modern wireless communications networks

Lu, Lu 21 September 2015 (has links)
We investigate spectral-efficient design and develop novel schemes to improve spectral efficiency of the modern wireless communications networks. Nowadays, more and more spectrum resources are required to support various high-data-rate applications while spectrum resources are limited. Moreover, static allocation and exclusive access in current spectrum assignment policy caused a lot of licensed spectrum bands to be underutilized. To deal with the problem, cognitive radio (CR) has been developed, which allows unlicensed/secondary users to transmit with licensed/primary users as long as the former ones do not generate intolerable interference to the latter ones. The coexistence of users and networks requires careful and dynamic planning to mitigate interference. Otherwise, the network performance will be severely undermined. We study both spectrum sensing and spectrum access techniques and propose several transmit schemes for different types of cognitive ratio networks, including spectrum overlay and spectrum underlay systems. The proposed algorithms can improve spectral efficiency of the networks efficiently and have potentials to be used in future wireless communications networks.
5

On the Performance of Underlay Cognitive Radio Networks with Interference Constraints and Relaying

Kabiri, Charles January 2015 (has links)
Efficiently allocating the scarce and expensive radio resources is a key challenge for advanced radio communication systems. To this end, cognitive radio (CR) has emerged as a promising solution which can offer considerable improvements in spectrum utilization. Furthermore, cooperative communication is a concept proposed to obtain spatial diversity gains through relays without requiring multiple antennas. To benefit from both CR and cooperative communications, a combination of CR networks (CRNs) with cooperative relaying referred to as cognitive cooperative relay networks (CCRNs) has recently been proposed. CCRNs can better utilize the radio spectrum by allowing the secondary users (SUs) to opportunistically access spectrum, share spectrum with primary users (PUs), and provide performance gains offered by cooperative relaying. In this thesis, a performance analysis of underlay CRNs and CCRNs in different fading channels is provided based on analytical expressions, numerical results, and simulations. To allocate power in the CCRNs, power allocation policies are proposed which consider the peak transmit power limit of the SUs and the outage probability constraint of the primary network. Thus, the impact of multiuser diversity, peak transmit power, fading parameters, and modulation schemes on the performance of the CRNs and CCRNs can be analyzed. The thesis is divided into an introduction and five research parts based on peer-reviewed conference papers and journal articles. The introduction provides fundamental background on spectrum sharing systems, fading channels, and performance metrics. In the first part, a basic underlay CRN is analyzed where the outage probability and the ergodic capacity of the network over general fading channels is derived. In the second part, the outage probability and the ergodic capacity of an underlay CRN are assessed capturing the effect of multiuser diversity on the network subject to Nakagami-m fading. Considering the presence of a PU transmitter (PU-Tx), a power allocation policy is derived and utilized for CRN performance analysis under Rayleigh fading. In the third part, the impact of multiple PU-Txs and multiple PU receivers (PU-Rxs) on the outage probability of an underlay CCRN is studied. The outage constraint at the PU-Rx and the peak transmit power constraint of the SUs are taken into account to derive the power allocation policies for the SUs. In the fourth part, analytical expressions for the outage probability and symbol error probability for CCRNs are derived where signal combining schemes at the SU receiver (SU-Rx) are compared. Finally, the fifth part applies a sleep/wake-up strategy and the min(N; T) policy to an underlay CRN. The SUs of the network operate as wireless sensor nodes under Nakagami-m fading. A power consumption function of the CRN is derived. Further, the impact of M/G/1 queue and fading channel parameters on the power consumption is assessed.
6

'Aptlie framed for the dittie' : a study of setting sacred Latin texts to music in sixteenth-century England

Ku, Christopher Jun-Sheng January 2014 (has links)
Although considerable attention has been paid to the texting practices of specific composers and certain repertoires, a comprehensive study of the practice of texting in the sacred Latin‐texted vocal works of sixteenth‐century England remains to be undertaken. How did English composers, scribes, and singers of the sixteenth century set words to music? Today, the general impression that emerges from critical apparatuses of modern performing editions, where manuscripts of vocal music copied by sixteenth-century English copyists are concerned, is negative: they are regarded as casual, often‐contradictory transmissions, replete with idiosyncrasies and arbitrary placement of text. But the detail in five hundred‐year‐old primary sources cannot and should not be so easily dismissed. Through a series of case studies drawn from the largest and most complete music manuscripts of English provenance that date from approximately 1500–90 — the Eton Choirbook, the Lambeth Choirbook, the Caius Choirbook, the ‘Forrest‐Heather’ Partbooks, the Peterhouse Partbooks (Henrician Set), the Sadler Partbooks, the Baldwin Partbooks, and the Dow Partbooks — this dissertation offers a fresh perspective on the many texting variants present in the sources, subjecting them to critical analysis to ascertain what prompted a scribe to copy a passage of music and its text in a particular way. Occasionally, a variant was indeed no more than a result of scribal error or inattention. More often than not, however, a scribe was either resolving an ambiguity that he perceived in his exemplar or deliberately infusing the copy with his own concepts of ideal texting. Three specific areas of interest are traced in the dissertation: the texting of long‐note cantus firmi, the treatment of melismata, and the relationship between music, prosody, and textual syntax. At the outset of the century, cantus firmus lines, as scribes copied them, required a certain amount of interpretation before they could be realised; melismata were an integral part of the compositional style that functioned as punctuation for the music; and textual coherence was unnecessary if it could not be achieved within the constraints of the music. By the close of the century, cantus firmus lines were copied literally with no additional interpretation required on the part of the performer; melismata were reduced to a purely decorative function; and textual integrity and correct prosody had become defining factors in how a piece of music was composed and formally organised. The specifics of what carried musicians from one extreme to the other in the interim is at the heart of this study. This dissertation is part of the growing body of research on the music of sixteenth‐century England. In enquiring into the minutiae of setting Latin text to music during this period, an area that heretofore has been relatively unexplored, it is hoped that this project will contribute to the total knowledge in the wider field of studies in text‐music relations.
7

Performance Analysis of Cognitive Radio Networks with Interference Constraints

Tran, Hung January 2013 (has links)
To support the rapidly increasing number of mobile users and mobile multimedia services, and the related demands for bandwidth, wireless communication technology is facing a potentially scarcity of radio spectrum resources. However, spectrum measurement campaigns have shown that the shortage of radio spectrum is due to inefficient usage and inflexible spectrum allocation policies. Thus, to be able to meet the requirements of bandwidth and spectrum utilization, spectrum underlay access, one of the techniques in cognitive radio networks (CRNs), has been proposed as a frontier solution to deal with this problem. In a spectrum underlay network, the secondary user (SU) is allowed to simultaneously access the licensed frequency band of the primary user (PU) as long as the interference caused by the SU to the PU is kept below a predefined threshold. By doing so, the spectrum utilization can be improved significantly. Moreover, the spectrum underlay network is not only considered as the least sophisticated in implementation, but also can operate in dense areas where the number of temporal spectrum holes is small. Inspired by the above discussion, this thesis provides a performance analysis of spectrum underlay networks which are subject to interference constraints. The thesis is divided into an introduction part and five parts based on peer-reviewed international research publications. The introduction part provides the reader with an overview and background on CRNs. The first part investigates the performance of secondary networks in terms of outage probability and ergodic capacity subject to the joint outage constraint of the PU and the peak transmit power constraint of the SU. The second part evaluates the performance of CRNs with a buffered relay. Subject to the timeout probability constraint of the PU and the peak transmit power constraint of the SU, system performance in terms of end-to-end throughput, end-to-end transmission time, and stable transmission condition for the relay buffer is studied. The third part analyzes a cognitive cooperative radio network under the peak interference power constraint of multiple PUs with best relay selection. The obtained results readily reveal insights into the impact of the number of PUs, channel mean powers of the communication and interference links on the system performance. The fourth part studies the delay performance of CRNs under the peak interference power constraint of multiple PUs for point-to-point and point-to-multipoint communications. A closedform expression for outage probability and an analytical expression for the average waiting time of packets are obtained for point-to-point communications. Moreover, the outage probability and successful transmission probability for packets in point-to-multipoint communications are presented. Finally, the fifth part presents work on the performance analysis of a spectrum underlay network for a general fading channel. A lower bound on the packet timeout probability and the average number of transmissions per packet are obtained for the secondary network.
8

The Relationship of Sn Whisker Growth and Sn-plating Process

Lu, Min-hsien 29 June 2007 (has links)
New environmental regulations enforce the electronic industry to replace Pb-Sn solder due to Pb could contaminate our environment. Pure Sn has good material properties such as solderability, conductivity and anti-corrosion. Pure Sn is a good candidate to replace Pb-Sn solder. One of the disadvantages of pure Sn is the whisker growth phenomenon. Whisker problem has become a major concern in electronic industry due to the trend toward component miniaturization and pitch reduction. It is well understood that the root cause for tin whisker growth is the compressive stress within the tin layer. In the literature, the main stress sources are, (1) the intermetallic layer induced interface stress, (2) the difference of thermal expansion coefficient between Sn layer and substrate and (3) the mechanical residual stress from trim-form operation after tin plating. In our study, we used the electrochemical electrolysis method and Cross-section Polisher (CP) to examine the tin whisker growth mechanism. In the result, we can clearly show the Cu6Sn5 phase grow up in the tin grain boundary regions and demonstrate that the Cu6Sn5 phase formation is the main cause of the tin whisker growth. We also discuss the relationship of tin whisker growth and tin-plating process parameters that include the temperature effect; Ni underlay effect and tin-plating bath effect. For the temperature effect, the Cu6Sn5 is the major phase at 150¢XC aging. The mechanism behind its growth mechanism was grain boundary diffusion at the earlier stage and then the bulk diffusion in the later stage. The application of 150¢XC post-heat treatment could drive the bulk diffusion and form a layer type Cu6Sn5 phase to eliminate the whisker growth. For the Ni underlay effect, the Ni underlay can block the Cu atom diffusion to the tin layer and changed the tin layer stress state from compressive to tensile. Therefore, the tin whisker can be eliminated. For the tin-plating bath effect, in the sulfuric acid base and uses Triton X-100 as the surface active agent, may transform the whisker type to particular tin grain type. Thus, this tin-plating solution can restrain the tin whisker growth.
9

DESIGN AND ANALYSIS OF COGNITIVE MASSIVE MIMO NETWORKS WITH UNDERLAY SPECTRUM SHARING

Al-Hraishawi, Hayder Abed Hussein 01 August 2017 (has links)
Recently, massive multiple-input multiple-output (MIMO) systems have gained significant attention as a new network architecture to not only achieving unprecedented spectral and energy efficiencies, but also to alleviating propagation losses and inter-user/inter-cell interference. Therefore, massive MIMO has been identified as one of the key candidate technologies for the 5th generation wireless standard. This dissertation thus focuses on (1) developing a performance analysis framework for cognitive massive MIMO systems by investigating the uplink transmissions of multi-cell multi-user massive MIMO secondary systems, which are underlaid in multi-cell multi-user primary massive MIMO systems, with taking into consideration the detrimental effects of practical transmission impairments, (2) proposing a new wireless-powered underlay cognitive massive MIMO system model, as the secondary user nodes is empowered by the ability to efficiently harvest energy from the primary user transmissions, and then access and utilize the primary network spectrum for information transmission, and (3) developing a secure communication strategy for cognitive multi-user massive MIMO systems, where physical layer secure transmissions are provisioned for both primary and secondary systems by exploiting linear precoders and artificial noise (AN) generation in order to degrade the signal decodability at eavesdropper. The key design feature of the proposed cognitive systems is to leverage the spatial multiplexing strategies to serve a large number of spatially distributed user nodes by using very large numbers of antennas at the base-stations. Moreover, the fundamental performance metrics, the secondary transmit power constraints, which constitute the underlay secondary transmissions subject to a predefined primary interference temperature, and the achievable sum rates of the primary and secondary systems, are characterized under different antenna array configurations. Additionally, the detrimental impact of practical wireless transmission impairments on the performance of the aforementioned systems are quantified. The important insights obtained throughout these analyses can be used as benchmarks for designing practical cognitive spectrum sharing networks.
10

Arte e religião : um estudo dos aspectos estéticos e religiosos dos ex-votos

Leite, Rodrigo Reis 15 October 2012 (has links)
As a type of religious and public testimony of gratitude, the ex-votos are objects of supply and thanks for a grace obtained by means of a deity. They belong to the Catholic cult and pop with symbolic function of overcoming difficulties through the compromise struck between an individual and his Holy of devotion. This highlights the importance of this practice as religious forces plumber element driven by faith and a feeling of closeness between the participants. From these aspects sought to address those objects their underlying aesthetic elements, taking into account the original contexts where the ex-votos emerged and acquired its religious significance and seeking to illustrate their importance as objects that have aesthetic and creative action. In this context, the practice of ex-votos works as a symbolic action that puts a kind of knowledge on the way that connects society, aesthetics, spirituality and corporate sentiment. In each ex-voto there is always a set of subjective values, a performance that takes place in the body and through the body. Are examples of how each social group constructs his idea of body and representation within the culture and pop religiosity through an aesthetic action often not intentional. / Como um tipo de testemunho religioso e público de gratidão, os ex-votos são objetos de oferta e agradecimento por uma graça obtida por intermédio de uma divindade. Eles pertencem ao culto católico popular e cumprem função simbólica de superação das dificuldades por meio do compromisso firmado entre um indivíduo e o seu santo de devoção. Isso põe em relevo a importância dessa prática como elemento canalizador de forças religiosas impulsionadas pela fé e de um sentimento de proximidade entre os participantes. A partir desses aspectos procurou-se abordar nesses objetos seus elementos estéticos subjacentes, levando em consideração os contextos originais onde os ex-votos surgiram e adquiriram seu significado religioso e buscando ilustrar sua importância como objetos que apresentam uma ação estética e criativa. Nesse contexto, a prática dos ex-votos funciona como uma ação simbólica que recoloca um tipo de conhecimento no caminho que liga sociedade, estética, espiritualidade e o sentimento societário. Em cada ex-voto há sempre um conjunto de valores subjetivos, uma performance que se realiza no corpo e através do corpo. São exemplos de como cada grupo social constrói a sua ideia de corpo e representação dentro da cultura e da religiosidade popular por meio de uma ação estética muitas vezes não intencional.

Page generated in 0.0325 seconds