• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Subconvexity Bounds and Simplified Delta Methods

Aggarwal, Keshav January 2019 (has links)
No description available.
2

Fourier Transforms of Functions on a Finite Abelian Group

Currey, Bradley Norton 08 1900 (has links)
This paper presents a theory of Fourier transforms of complex-valued functions on a finite abelian group and investigates two applications of this theory. Chapter I is an introduction with remarks on notation. Basic theory, including Pontrvagin duality and the Poisson Summation formula, is the subject of Chapter II. In Chapter III the Fourier transform is viewed as an intertwining operator for certain unitary group representations. The solution of the eigenvalue problem of the Fourier transform of functions on the group Z/n of integers module n leads to a proof of the quadratic reciprocity law in Chapter IV. Chapter V addresses the, use of the Fourier transform in computing.
3

On Shifted Convolution Sums Involving the Fourier Coefficients of Theta Functions Attached to Quadratic Forms

Ravindran, Hari Alangat 29 December 2014 (has links)
No description available.
4

Summation formulae and zeta functions

Andersson, Johan January 2006 (has links)
<p>This thesis in analytic number theory consists of 3 parts and 13 individual papers.</p><p>In the first part we prove some results in Turán power sum theory. We solve a problem of Paul Erdös and disprove conjectures of Paul Turán and K. Ramachandra that would have implied important results on the Riemann zeta function.</p><p>In the second part we prove some new results on moments of the Hurwitz and Lerch zeta functions (generalized versions of the Riemann zeta function) on the critical line.</p><p>In the third and final part we consider the following question: What is the natural generalization of the classical Poisson summation formula from the Fourier analysis of the real line to the matrix group SL(2,R)? There are candidates in the literature such as the pre-trace formula and the Selberg trace formula.</p><p>We develop a new summation formula for sums over the matrix group SL(2,Z) which we propose as a candidate for the title "The Poisson summation formula for SL(2,Z)". The summation formula allows us to express a sum over SL(2,Z) of smooth functions f on SL(2,R) with compact support, in terms of spectral theory coming from the full modular group, such as Maass wave forms, holomorphic cusp forms and the Eisenstein series. In contrast, the pre-trace formula allows us to get such a result only if we assume that f is also SO(2) bi-invariant.</p><p>We indicate the summation formula's relationship with additive divisor problems and the fourth power moment of the Riemann zeta function as given by Motohashi. We prove some identities on Kloosterman sums, and generalize our main summation formula to a summation formula over integer matrices of fixed determinant D. We then deduce some consequences, such as the Kuznetsov summation formula, the Eichler-Selberg trace formula and the classical Selberg trace formula.</p>
5

Summation formulae and zeta functions

Andersson, Johan January 2006 (has links)
This thesis in analytic number theory consists of 3 parts and 13 individual papers. In the first part we prove some results in Turán power sum theory. We solve a problem of Paul Erdös and disprove conjectures of Paul Turán and K. Ramachandra that would have implied important results on the Riemann zeta function. In the second part we prove some new results on moments of the Hurwitz and Lerch zeta functions (generalized versions of the Riemann zeta function) on the critical line. In the third and final part we consider the following question: What is the natural generalization of the classical Poisson summation formula from the Fourier analysis of the real line to the matrix group SL(2,R)? There are candidates in the literature such as the pre-trace formula and the Selberg trace formula. We develop a new summation formula for sums over the matrix group SL(2,Z) which we propose as a candidate for the title "The Poisson summation formula for SL(2,Z)". The summation formula allows us to express a sum over SL(2,Z) of smooth functions f on SL(2,R) with compact support, in terms of spectral theory coming from the full modular group, such as Maass wave forms, holomorphic cusp forms and the Eisenstein series. In contrast, the pre-trace formula allows us to get such a result only if we assume that f is also SO(2) bi-invariant. We indicate the summation formula's relationship with additive divisor problems and the fourth power moment of the Riemann zeta function as given by Motohashi. We prove some identities on Kloosterman sums, and generalize our main summation formula to a summation formula over integer matrices of fixed determinant D. We then deduce some consequences, such as the Kuznetsov summation formula, the Eichler-Selberg trace formula and the classical Selberg trace formula.
6

q-series in number theory and combinatorics : a thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics at Massey University, Albany, New Zealand

Lam, Heung Yeung January 2006 (has links)
Srinivasa Ramanujan (1887-1920) was one of the world's greatest mathematical geniuses. He work extensively in a branch of mathematics called "q-series". Around 1913, he found an important formula which now is known as Ramanujan's 1ψ1summation formula. The aim of this thesis is to investigate Ramanujan's 1ψ1summation formula and explore its applications to number theory and combinatorics. First, we consider several classical important results on elliptic functions and then give new proofs of these results using Ramanujan's 1ψ1 summation formula. For example, we will present a number of classical and new solutions for the problem of representing an integer as sums of squares (one of the most celebrated in number theory and combinatorics) in this thesis. This will be done by using q-series and Ramanujan's 1ψ1 summation formula. This in turn will give an insight into how Ramanujan may have proven many of his results, since his own proofs are often unknown, thereby increasing and deepening our understanding of Ramanujan's work.
7

An Arcsin Limit Theorem of D-Optimal Designs for Weighted Polynomial Regression

Tsai, Jhong-Shin 10 June 2009 (has links)
Consider the D-optimal designs for the dth-degree polynomial regression model with a bounded and positive weight function on a compact interval. As the degree of the model goes to infinity, we show that the D-optimal design converges weakly to the arcsin distribution. If the weight function is equal to 1, we derive the formulae of the values of the D-criterion for five classes of designs including (i) uniform density design; (ii) arcsin density design; (iii) J_{1/2,1/2} density design; (iv) arcsin support design and (v) uniform support design. The comparison of D-efficiencies among these designs are investigated; besides, the asymptotic expansions and limits of their D-efficiencies are also given. It shows that the D-efficiency of the arcsin support design is the highest among the first four designs.

Page generated in 0.2227 seconds