• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Design of a Test Apparatus for Resolving Near-Field Effects Associated With Using a Coarse Sun Sensor as Part of a 6-DOF Solution

Stancliffe, Devin Aldin 2010 August 1900 (has links)
Though the Aerospace industry is moving towards small satellites and smaller sensor technologies, sensors used for close-proximity operations are generally cost (and often size and power) prohibitive for University-class satellites. Given the need for low-cost, low-mass solutions for close-proximity relative navigation sensors, this research analyzed the expected errors due to near-field effects using a coarse sun sensor as part of a 6-degree-of-freedom (6-dof) solution. To characterize these near-field effects, a test bed (Characterization Test Apparatus or CTA) was proposed, its design presented, and the design stage uncertainty analysis of the CTA performed. A candidate coarse sun sensor (NorthStarTM) was chosen for testing, and a mathematical model of the sensor’s functionality was derived. Using a Gaussian Least Squares Differential Correction (GLSDC) algorithm, the model parameters were estimated and a comparison between simulated NorthStarTM measurements and model estimates was performed. Results indicate the CTA is capable of resolving the near-field errors. Additionally, this research found no apparent show stoppers for using coarse sun sensors for 6-dof solutions.
2

Design, Test, Calibration and Qualification of Satellite Sun Sensors, Power Systems and Supporting Software Development

Gavigan, Patrick 30 May 2011 (has links)
This thesis describes technologies developed for nanosatellites at the Space Flight Laboratory. A critical ground station component, the Terminal Node Controller, was upgraded in order to support Generic Nanosatellite Bus and future missions. Sun sensor requirements and operation were reviewed, followed by details of the author's work in executing the acceptance testing on these parts, including thermal shock testing, thermal functional testing, calibration, system level testing and on orbit commissioning. A new calibration test process was developed, along with supporting structure and software to ease the testing process, producing accurate calibration parameters and expected performance results for the sensors. A thermal qualification campaign was completed, demonstrating that sun sensors are capable of functioning with negligible performance degradation after exposure to extreme temperatures. A process for installing the sun sensor pin hole was developed using photolithography. Finally, power subsystem analysis for the NEMO-AM mission is presented.
3

Design, Test, Calibration and Qualification of Satellite Sun Sensors, Power Systems and Supporting Software Development

Gavigan, Patrick 30 May 2011 (has links)
This thesis describes technologies developed for nanosatellites at the Space Flight Laboratory. A critical ground station component, the Terminal Node Controller, was upgraded in order to support Generic Nanosatellite Bus and future missions. Sun sensor requirements and operation were reviewed, followed by details of the author's work in executing the acceptance testing on these parts, including thermal shock testing, thermal functional testing, calibration, system level testing and on orbit commissioning. A new calibration test process was developed, along with supporting structure and software to ease the testing process, producing accurate calibration parameters and expected performance results for the sensors. A thermal qualification campaign was completed, demonstrating that sun sensors are capable of functioning with negligible performance degradation after exposure to extreme temperatures. A process for installing the sun sensor pin hole was developed using photolithography. Finally, power subsystem analysis for the NEMO-AM mission is presented.

Page generated in 0.1816 seconds