• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Trajectory Design Strategies from Geosynchronous Transfer Orbits to Lagrange Point Orbits in the Sun-Earth System

Juan Andre Ojeda Romero (11560177) 22 November 2021 (has links)
<div>Over the past twenty years, ridesharing opportunities for smallsats, i.e., secondary payloads, has increased with the introduction of Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) rings. However, the orbits available for these secondary payloads is limited to Low Earth Orbits (LEO) or Geostationary Orbits (GEO). By incorporating a propulsion system, propulsive ESPA rings offer the capability to transport a secondary payload, or a collection of payloads, to regions beyond GEO. In this investigation, the ridesharing scenario includes a secondary payload in a dropped-off Geosynchronous Transfer Orbit (GTO) and the region of interest is the vicinity near the Sun-Earth Lagrange points. However, mission design for secondary payloads faces certain challenges. A significant mission constraint for a secondary payload is the drop-off orbit orientation, as it is dependent on the primary mission. To address this mission constraint, strategies leveraging dynamical structures within the Circular Restricted Three-Body Problem (CRTBP) are implemented to construct efficient and flexible transfers from GTO to orbits near Sun-Earth Lagrange points. First, single-maneuver ballistic transfers are constructed from a range of GTO departure orientations. The ballistic transfer utilize trajectories within the stable manifold structure associated with periodic and quasi-periodic orbits near the Sun-Earth L1 and L2 points. Numerical differential corrections and continuation methods are leveraged to create families of ballistic transfers. A collection of direct ballistic transfers are generated that correspond to a region of GTO departure locations. Additional communications constraints, based on the Solar Exclusion Zone and the Earth’s penumbra shadow region, are included in the catalog of ballistic transfers. An integral-type path condition is derived and included throughout the differential corrections process to maintain transfers outside the required communications restrictions. The ballistic transfers computed in the CRTBP are easily transitioned to the higher-fidelity ephemeris model and validated, i.e., their geometries persist in the ephemeris model. To construct transfers to specific orbits near Sun-Earth L1 or L2, families of two-maneuver transfers are generated over a range of GTO departure locations. The two-maneuver transfers consist of a maneuver at the GTO departure location and a Deep Space Maneuver (DSM) along the trajectory. Families of two-maneuver transfers are created via a multiple- shooting differential corrections method and a continuation process. The generated families of transfers aid in the rapid generation of initial guesses for optimized transfer solutions over a range of GTO departure locations. Optimized multiple-maneuver transfers into halo and Lissajous orbits near Sun-Earth L1 and L2 are included in this analysis in both the CRTBP model and the higher-fidelity ephemeris model. Furthermore, the two-maneuver transfer strategy employed in this analysis are easily extended to other Three-Body systems. </div>
2

Characterization of Quasi-Periodic Orbits for Applications in the Sun-Earth and Earth-Moon Systems

Brian P. McCarthy (5930747) 17 January 2019 (has links)
<div>As destinations of missions in both human and robotic spaceflight become more exotic, a foundational understanding the dynamical structures in the gravitational environments enable more informed mission trajectory designs. One particular type of structure, quasi-periodic orbits, are examined in this investigation. Specifically, efficient computation of quasi-periodic orbits and leveraging quasi-periodic orbits as trajectory design alternatives in the Earth-Moon and Sun-Earth systems. First, periodic orbits and their associated center manifold are discussed to provide the background for the existence of quasi-periodic motion on n-dimensional invariant tori, where n corresponds to the number of fundamental frequencies that define the motion. Single and multiple shooting differential corrections strategies are summarized to compute families 2-dimensional tori in the Circular Restricted Three-Body Problem (CR3BP) using a stroboscopic mapping technique, originally developed by Howell and Olikara. Three types of quasi-periodic orbit families are presented: constant energy, constant frequency ratio, and constant mapping time families. Stability of quasi-periodic orbits is summarized and characterized with a single stability index quantity. For unstable quasi-periodic orbits, hyperbolic manifolds are computed from the differential of a discretized invariant curve. The use of quasi-periodic orbits is also demonstrated for destination orbits and transfer trajectories. Quasi-DROs are examined in the CR3BP and the Sun-Earth-Moon ephemeris model to achieve constant line of sight with Earth and avoid lunar eclipsing by exploiting orbital resonance. Arcs from quasi-periodic orbits are leveraged to provide an initial guess for transfer trajectory design between a planar Lyapunov orbit and an unstable halo orbit in the Earth-Moon system. Additionally, quasi-periodic trajectory arcs are exploited for transfer trajectory initial guesses between nearly stable periodic orbits in the Earth-Moon system. Lastly, stable hyperbolic manifolds from a Sun-Earth L<sub>1</sub> quasi-vertical orbit are employed to design maneuver-free transfer from the LEO vicinity to a quasi-vertical orbit.</div>

Page generated in 0.0528 seconds