• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MINIMAL SUPERSYMMETRIC STANDARD MODEL PARAMETER SPACE EXCLUSION BY ANALYZING METASTABLE SCALAR VACUUM CONFIGURATIONS

RADEMACHER, RICARDO JAVIER 11 June 2002 (has links)
No description available.
2

Catalyzed Big Bang Nucleosynthesis and the properties of charged relics in the early universe

Koopmans, Kristen Alanna 27 August 2007 (has links)
The existence of charged electroweak-scale particles in the early universe can drastically affect the evolution of elemental abundances. Through the formation of Coulombic bound states with light nuclei, these exotic relic particles (hereafter referred to as X–) act to catalyze nuclear reactions by reducing their threshold energies. This thesis examines the properties of the X– bound states, and uses primordial element observations to constrain the abundance, lifetime, and mass of this exotic particle species. If the X– is a Dirac Fermion, its abundance relative to baryons is found to be YX- ~ 0.01, with a lifetime of 1500s ≤ τX- ≤ 3000s, and a mass of order 100 GeV. Assuming that the X– is a Scalar particle that decays into gravitinos, the resulting bounds become, 5x10-4 ≤ YX- ≤ 0.07, 1600s ≤ τX- ≤ 7000s, and 60GeV ≤ mX- ≤ 1000GeV. These ranges are consistent with Dark Matter constraints.
3

Catalyzed Big Bang Nucleosynthesis and the properties of charged relics in the early universe

Koopmans, Kristen Alanna 27 August 2007 (has links)
The existence of charged electroweak-scale particles in the early universe can drastically affect the evolution of elemental abundances. Through the formation of Coulombic bound states with light nuclei, these exotic relic particles (hereafter referred to as X–) act to catalyze nuclear reactions by reducing their threshold energies. This thesis examines the properties of the X– bound states, and uses primordial element observations to constrain the abundance, lifetime, and mass of this exotic particle species. If the X– is a Dirac Fermion, its abundance relative to baryons is found to be YX- ~ 0.01, with a lifetime of 1500s ≤ τX- ≤ 3000s, and a mass of order 100 GeV. Assuming that the X– is a Scalar particle that decays into gravitinos, the resulting bounds become, 5x10-4 ≤ YX- ≤ 0.07, 1600s ≤ τX- ≤ 7000s, and 60GeV ≤ mX- ≤ 1000GeV. These ranges are consistent with Dark Matter constraints.
4

Towards a systematic investigation of weakly coupled free fermionic heterotic string gauge group statistics

Robinson, Matthew Brandon, Cleaver, Gerald B. January 2009 (has links)
Thesis (Ph.D.)--Baylor University, 2009. / Includes bibliographical references (p. 124-130).

Page generated in 0.0639 seconds