• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymeric membranes for super critical carbon dioxide (scCO2) separations

Kosuri, Madhava Rao 23 March 2009 (has links)
Providing an energy efficient recycle for the Teflon® synthesis process is of great interest due to environmental and economic reasons. This recycle step involves separating CO2 from a stream containing scCO2 and valuable monomer (C2F4). Membranes provide economical and environmental friendly separations compared to conventional methods (e.g. distillation, amine absorption). Therefore, I am investigating membrane materials that are well-suited for this important separation. Developing a robust membrane that can withstand the aggressive scCO2 environment (~1070 psi of CO2) is a key challenge. Supercritical CO2 swells traditional polymeric membrane materials, thereby increasing segmental mobility of the polymer chains which leads to a decrease in separation capacity. There have been no polymeric membrane materials identified in the literature which are suitable for this separation. In this work, I have identified an advanced polymer, Torlon® (a polyamide-imide), that solves this problem. After determining the appropriate material, it is important to choose a membrane morphology that is industrially desirable. The asymmetric hollow fiber membrane morphology provides the highest productivity. I have successfully produced defect-free asymmetric hollow fiber membranes using Torlon® that withstand high pressure feeds. These membranes have been shown to provide selective separations under scCO2 conditions without being plasticized. To further improve the separation performance of Torlon® membranes, mixed matrix concept was explored. Zeolite 4A, which is relatively more permeable and selective compared to Torlon®, was chosen as the sieve material. Mixed matrix membranes from Torlon® and zeolite 4A were made and their separation performance was measured. Based on these experimental measurements and Maxwell modeling, challenges in making successful mixed matrix membranes were identified and feasible solutions for these challenges are suggested.
2

Techno-economic fesibility of a hybrid CSP (sCO2) - PV plant for hydrogen production

Perez De La Calle, Patricia January 2023 (has links)
The global need to eliminate CO2 emissions and its consequent reduction in the use of fossil fuels drives the ongoing energy transition that highly involves the research achievements of the scientific community to reach the goals of this purpose. Renewable sources like photovoltaic and wind energy, are central to this endeavor, however, the intermittency of natural resources makes it non-dispatchable and energy storage is fundamental. According to the European Roadmap [1] just a 60% of the CO2 emissions reduction goal can be achieved with available technologies and existing energy. However, the production, use and specially storage opportunities that hydrogen offers can drive non-dispatchable renewable sources to achieve its full potential by clearing up the intermittency problem as well as covering the remained 40% gap. This master's thesis aims to investigate the techno-economic feasibility of integrating a Solid Oxide Electrolyzer Cell (SOEC) into a hybrid PV-CSP(sCO2) plant. The study focuses on assessing various indicators related to electricity, energy, and hydrogen production prices. To achieve this, three different integration strategies within the hybrid PV-CSP(sCO2) plant were selected for analysis: Soec using heat from the particles coming from the receiver, soec using heat coming from the particles available in the thermal energy storage (TES) and soec recovering heat from the sCO2 power block. A sensitivity analysis was conducted on different PV sizes (MWp), battery capacities (MWh), and SOEC installed capacities (MWh) to investigate the technology's potential in the plant and determine optimal sizing of subsystems. However, the individual optimization of economic indicators presented technical and economic challenges. Scenarios allowing individual optimization of hydrogen production prices (€/kg H2) resulted in 10.9, 11.7, and 14.6 €/kg h2 for receiver, TES, and sCO2 integration strategy, respectively. These scenarios, however, require high SOEC installed capacities, leading to elevated electricity and energy production prices. On the other hand, the individual optimization of electricity and energy production prices led to better and lower results when no hydrogen production presence within the plant. However, this analysis also showed that soec capacities below 5MWh together with no installation of batteries and a new definition for calculating hydrogen production prices (LCOH) allows feasible integration of hydrogen production within the plant. LCOH(€/kg h2) results were 10.2€/kg h2, 7.6€/kg h2, and 9.4€/kg h2 for receiver, TES, and sCO2, respectively, for a soec installed capacity of 0.5MWh (119m2 size) along with energy production values not exceeding 101€/MWh. While the results present a favorable outlook for SOEC installations based on literature review data [2] [3] [4] they still face challenges when competing with the cost-efficient PEM technology, which offers 4.5-5.5€/kg H2 [5] without storage. Nonetheless, this research contributes valuable insights into the integration of SOEC technology within hybrid renewable energy systems and provides a comprehensive analysis of the techno-economic aspects related to hydrogen production following different integration strategies. The findings may inform decision-making processes and promote further advancements in sustainable energy solutions. / Det globala behovet av att eliminera CO2utsläpp och därmed minska användningen av fossila bränslen driver pågående energiomställning, som starkt involverar forskningsresultaten från vetenskapssamhället för att nå syftet med detta mål. Förnybara källor som solceller och vindkraft är centrala i detta arbete, men intermittensen hos naturliga resurser gör dem icke disponibla och energilagring är grundläggande. Enligt den europeiska vägkartan [1] kan endast 60% av målet att minska CO2-utsläppen uppnås med tillgängliga teknologier och befintlig energi. Produktionen, användningen och särskilt lagringsmöjligheterna som väte erbjuder kan emellertid driva icke-disponibla förnybara källor att nå sin fulla potential genom att lösa intermitt ensproblemet och täcka den återstående 40% klyftan. Detta examensarbete syftar till att undersöka den tekniskekonomiska genomförbarheten av att integrera en fastoxid elektrolysör (SOEC) i en hybrid PV CSP(sCO2)-anläggning. Studien fokuserar på att utvärde ra olika indikatorer relaterade till el-, energi- och vätgasproduktionspriser. För att uppnå detta har tre olika integrationsstrategier inom hybrid PV CSP(sCO2) anläggningen valts för analys: SOEC med hjälp av värme från partiklar som kommer från mottagaren, SOEC med hjälp av värme från partiklar som finns i termisk energilagring (TES) och SOEC som återvinner värme från sCO2-kraftblocket. En känslighetsanalys har genomförts för olika PVstorlekar (MWp), batterikapaciteter (MWh) och SOEC installerade kapacit eter (MWh) för att undersöka teknologins potential i anläggningen och bestämma optimal dimensionering av delsystem. Resultaten från individuell optimering av ekonomiska indikatorer ledde dock till flera tekniska och ekonomiska utmaningar. Scenarier som tillåter individuell optimering av vätgasproduktionspriser (€/kg H2) resulterade i 10, 9, 11, 7 respektive 14,6 €/kg H2 för mottagare, TES och sCO2 integrationsstrategi. Dessa scenarier kräver dock höga SOEC installerade kapaciteter, vilket leder till höga el och energipriser. Å andra sidan ledde individuell optimering av el och energiproduktionspriser till bättre och lägre resultat när ingen vätgasproduktion fanns i anläggningen. Denna analys visade också att SOEC kapaciteter under 5MWh tillsammans med ingen installation av batterier och en ny definition för beräkning av vätgasproduktionspriser (LCOH) möjliggör genomförbar integration av vätgasproduktion i anläggningen. LCOH (€/kg H2) resultaten var 10,2 €/kg h2 , 7 ,6 €/kg h2 respektive 9,4 €/kg h2 för mottagare, TES och sCO2, för en SOEC installerad kapacitet på 0,5 MWh (storlek 119m2) tillsammans med energiproduktionsvärden som inte överstiger 101 €/MWh. Medan resultaten visar en gynnsam utsikt för SOECinstallationer baserat på data från litteraturöversikter [2] [3] [4], står de ändå inför utmaningar när de konkurrerar med den kostnadseffektiva PEM teknologin, som erbjuder 4,5-5,5 €/kg H2 [5] utan lagring. Trots detta bidrar forskningen med värdefulla insikter i integrationen av SOEC teknologi i hybrid förnybara energisystem och ger en omfattande an alys av de teknisk-ekonomiska aspekterna relaterade till vätgasproduktion enligt olika integrationsstrategier. Resultaten kan informera beslutsprocesser och främja ytterligare framsteg inom hållbara energilösningar.
3

Influence of the processes parameters on the properties of the polylactides based bio and eco-biomaterials / Influence des paramètres de procédés sur les propriétés et éco-composites à base de polylactides

Subhani, Arfan Ul Haq 22 July 2011 (has links)
Le travail présenté dans ce manuscrit concerne la fabrication de biomatériaux poreux à base d’acide polylactique pour les tissus conjonctifs et calcifiés en utilisant des procédés de chimie verte. Le but de cette thèse est de corréler l’influence de certains paramètres de procédés à la structure morphologique et les propriétés des mousses générées. Nous avons étudié, d’un côté, les effets de mélange d’acide hyaluronique et d’acides polylactiques afin d’améliorer les propriétés d’adhésion de ces biomatériaux. Nos résultats montrent bien une augmentation de l’énergie d’adhésion mais aussi une diminution de la taille équivalente des pores et de la porosité des biomatériaux poreux après moussage par les fluides supercritiques. D’un autre côté, nous avons étudié les effets de mélanges des triphosphates de calcium et d’acides polylactiques en tant que substitut osseux. L’influence d’un ajout de cires en tant qu’agent porogène a été discutée et les méthodes de préparation des pastilles (voie sèche ou humide) ont été analysées. Dans cette optique la fabrication semi-industrielle de biomatériaux poreux a été testée en fixant les paramètres du procédé de moussage par le CO2 supercritique (pression, température et temps de saturation, vitesse de dépressurisation) et nous avons contrôlé les mousses de formulations optimisées en termes de porosité et de distribution des pores. En conclusion, ce travail rend possible d’adapter les paramètres des procédés de CO2 supercritique et de co-broyage aux propriétés des biomatériaux poreux. En perspective, cette ouvre la voie à de nouvelles recherches à la fois dans les domaines des modèles 3D tumoraux et d’ingénierie tissulaire. / The work presented in this manuscript concerns the production of scaffolds based polylactides for connective tissues and bone regeneration by adapting green technology. The aim of this thesis was to correlate the influence of different process parameters on the morphological structures and properties of the scaffold generated. On one hand, we studied effect of the blending of hyaluronic acid and polylactides to enhance the surface adhesion properties of scaffolds. Our results relate to an increase in surface properties but a decrease of equivalent pore size and porosity after foaming scaffolds by supercritical process. Calcium Tri-Phosphate On other hand, we studied the effect of the blending of calcium tri-phosphates and polylactides as bone substitute. Influence of adding wax as porogen agent has been discussed and a comparison between wet and dry methods to generate scaffolds has been analyzed. For this purpose, semi-industrial fabrication of porous biomaterials has been tested by blocking supercritical CO2 parameters (saturation pressure, temperature and time, depressurization rate) and you have control the optimized formulation composite scaffold, in term of porosity and distribution of pores. In conclusion, this work made it possible to adapt the process parameters of supercritical CO2 and co-grinding at the properties of scaffolds. In perspective, this research opens new development ways in scaffolds, in both domains of 3D tumoral model and tissue engineering.

Page generated in 0.063 seconds